首页> 外文期刊>Journal of Applied Physics >Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells
【24h】

Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

机译:注入的磷对硼扩散率的影响及其对硅太阳能电池的适用性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr_3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (ⅰ) no reduction of B diffusivity, (ⅱ) reduced B diffusivity, and (ⅲ) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr_3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr_3 diffusion.
机译:在由BBr_3炉扩散和先前的磷离子注入组成的工艺组合的背景下,研究了非本征掺杂硅中硼扩散率的降低。磷的注入会导致硼在随后的硼扩散过程中大量阻塞。首先,独立研究了离子注入引起的点缺陷以及初始P掺杂对B扩散率的影响。在此发现,不是离子注入期间产生的缺陷而是P掺杂本身导致观察到的B扩散延迟。通过改变磷的注入剂量,可以更详细地研究初始磷浓度的影响。在B扩散之后对BSG层的二次离子质谱(SIMS)分析表明,B扩散延迟不是由于BSG层中的潜在P含量而是由晶体硅本身的n型掺杂引起的。根据观察结果,将B扩散延迟分为三类:(ⅰ)B扩散率未降低,(ⅱ)B扩散率降低,(ⅲ)阻止了B扩散。 B扩散的延迟可以很好地解释为磷掺杂能级导致费米能级移动以及B和P离子成对,都降低了B扩散率。除了这些主要影响之外,可能还有其他瞬态现象可导致硼的阻塞。这些可能是由P扩散引起的间隙传输机制,该机制降低了表面上的间隙浓度或由于BBr_3扩散过程中的氧化而导致的硅/ BSG界面偏移。终生测量表明,残留的(未阻塞)B导致P掺杂区域的暗饱和电流密度增加。然而,电气质量处于较高水平,并且通过降低B剂量以及在BBr_3扩散后去除硅表面的前几纳米,进一步提高了电气质量。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第4期|045702.1-045702.10|共10页
  • 作者单位

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, D-79110 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, D-79110 Freiburg, Germany;

    National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, Colorado 80401, USA;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, D-79110 Freiburg, Germany;

    Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, D-79110 Freiburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号