首页> 外文OA文献 >Iron Precipitation upon Gettering in Phosphorus-Implanted Czochralski Silicon and its Impact on Solar Cell Performance
【2h】

Iron Precipitation upon Gettering in Phosphorus-Implanted Czochralski Silicon and its Impact on Solar Cell Performance

机译:磷注入的切克劳斯基硅中吸杂时铁的沉淀及其对太阳能电池性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phosphorus implantation can provide a direct route to a high-performing emitter, with no surface dead layer and improved blue response, and potentially higher open-circuit voltage. Here, iron precipitation during gettering is investigated in phosphorus-implanted, low-oxygen monocrystalline silicon and its impact on device performance evaluated. Previously, it has been shown that higher levels of initial iron contamination lead to lower final interstitial iron concentration after gettering with ion-implanted emitters, resulting in longer final bulk diffusion lengths in the more-highly contaminated materials. In this contribution, we show that despite longer bulk diffusion lengths, the open circuit-voltage of devices made from the highly iron-contaminated material can be strongly reduced. Using synchrotron-based Xray fluorescence we reveal the presence of micron-sized iron precipitates in the near surface region. While not measured over wafer-sized areas, the density of these precipitates correlates with the annealing profile. Slow-cooling from the activation anneal and proceeding directly to a 620-750°C gettering anneal results in large precipitates that are indicated as the underlying cause for the disastrous open-circuit voltage. On the other hand, quickly cooling to room temperature and then re-inserting the wafers for gettering results in very small precipitates that do not appear to have significant detrimental affects on open-circuit voltage. It is thus critical to consider the precipitation behavior of iron during gettering of ion-implanted emitters - even in monocrystalline silicon - and during low-temperature annealing in general.
机译:磷注入可以提供通往高性能发射极的直接途径,而没有表面死角层和改善的蓝光响应,并且可能具有更高的开路电压。在此,研究了在磷注入的低氧单晶硅中进行的吸杂过程中铁的沉淀及其对器件性能的影响。以前,已经显示出较高水平的初始铁污染导致在离子注入的发射体吸杂后导致较低的最终间隙铁浓度,从而导致受较高污染的材料的最终本体扩散长度更长。在此贡献中,我们表明,尽管较长的体扩散长度,仍可以大大降低由铁含量高的材料制成的器件的开路电压。使用基于同步加速器的X射线荧光,我们揭示了在近表面区域中存在微米级铁沉淀物。尽管未在晶圆尺寸区域上进行测量,但这些沉淀物的密度与退火曲线相关。从活化退火缓慢冷却并直接进行到620-750°C的吸气退火会导致大量沉淀物,这被认为是造成灾难性开路电压的根本原因。另一方面,迅速冷却至室温,然后重新插入晶片进行吸气会产生非常小的沉淀,这些沉淀似乎对开路电压没有明显的不利影响。因此,至关重要的是,在离子注入发射极的吸杂过程中(甚至在单晶硅中)以及通常在低温退火过程中,考虑铁的沉淀行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号