...
首页> 外文期刊>Journal of Applied Physics >Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations
【24h】

Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

机译:增强空穴迁移率的最佳Ge / SiGe纳米鳍几何:来自原子模拟的技术极限

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.
机译:我们使用第一原理模拟,通过通过纳米图案控制三轴应变来设计Ge纳米鳍片,以实现最大的空穴迁移率。大规模的分子动力学可以预测出完全松散的原子结构,可以通过实验获得纳米鳍片,并使用正交紧密结合来获得相应的电子结构。然后通过线性化的玻耳兹曼形式主义获得空穴传输性质。该方法明确考虑了自由表面和相关的应变松弛以及应变梯度,这对于纳米级结构的定量预测至关重要。我们表明,由于鳍的长径比的减小而导致的横向应变松弛导致声子有限空穴迁移率的显着提高(非应变,块状Ge的比为7倍,双轴应变Ge的比为3.5倍)。通过将宽度减小到大约高度的1.5倍,可以最大程度地提高宽度,而进一步减小宽度不会带来额外的收益。这些结果表明,与当前的Ge纳米鳍片相比,还有很大的改进空间,为设计优化的几何形状提供了几何准则,并提供了对显着迁移率提高背后的物理学的认识。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第1期|174312.1-174312.7|共7页
  • 作者单位

    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号