首页> 外文期刊>Journal of Applied Physics >First-principles and molecular dynamics study of thermoelectric transport properties of N-type silicon-based superlattice-nanocrystalline heterostructures
【24h】

First-principles and molecular dynamics study of thermoelectric transport properties of N-type silicon-based superlattice-nanocrystalline heterostructures

机译:N型硅基超晶格-纳米晶异质结构热电输运性质的第一性原理和分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Electrical and thermal transport in silicon germanium superlattice nanostructures has received extensive attention from scientists for understanding carrier properties at the nanoscale, and the figure-of-merit (ZT) reported in such structures has inspired engineers to develop cost-effective waste heat recovery systems. In this paper, the thermoelectric transport properties of the silicon-based superlattice- and anti-superlattice-nanocrystalline heterostructures are systematically studied by first-principles and molecular dynamics simulations combined with the Boltzmann transport theory. The thermal conductivity, which is thought to be the essential bottleneck for bulk crystalline Si to gain a high ZT value, of such structures is found to be reduced by two orders of magnitude and reaches a level far below the amorphous limit of Si. This is achieved due to the extremely strong phonon-boundary scattering at both grain boundaries and Si-Ge interfaces, which will lead to the phonon mean free path being much smaller than the grain size (Casmir limit): for instance, the dominant phonons are in range of 0.5 to 3 nm for the heterostructures with a grain size of around 8 nm. Meanwhile, the power factor can be preserved at the level comparable to bulk crystalline because of the quantum confinement effect, which resulted from the conduction band minima converge, reduction of band gap, and the short mean free path of carriers. As a result, the ZT of such superlattice based nanomembranes can reach around 0.3 at room temperature, which is two orders of magnitude higher than the bulk crystalline case. The corresponding bulk superlattice-nanocrystalline heterostructures possess a ZT value of 0.5 at room temperature, which is superior to all other bulk silicon-based thermoelectrics. Our results here show that nanostructuring the superlattice structure can further decrease the thermal conductivity while keeping the electrical transport properties at the bulk comparable level, and provides a new strategy for enhancing the thermoelectric performance of the silicon-based nanostructures.
机译:硅锗超晶格纳米结构中的电学和热学传输已受到科学家的广泛关注,以了解其在纳米尺度上的载体性质,并且在此类结构中报道的品质因数(ZT)激励了工程师开发具有成本效益的废热回收系统。本文通过第一性原理和分子动力学模拟结合玻尔兹曼输运理论,系统地研究了硅基超晶格和反超晶格纳米晶异质结构的热电输运性质。发现这种结构的热导率降低了两个数量级,并且远低于Si的非晶极限,导热率被认为是块状晶体Si获得高ZT值的基本瓶颈。这是由于晶界和Si-Ge界面处的声子边界散射非常强而导致的,这将导致声子平均自由程远小于晶粒尺寸(Casmir极限):例如,占优势的声子为对于具有约8nm的晶粒尺寸的异质结构,其在0.5至3nm的范围内。同时,由于量子约束效应,功率因数可以保持在与块状晶体相当的水平,这是由于导带极小会聚,带隙减小和载流子平均自由程短所致。结果,这种基于超晶格的纳米膜的ZT在室温下可以达到约0.3,这比本体结晶情况高两个数量级。相应的体超晶格-纳米晶异质结构在室温下的ZT值为0.5,优于所有其他体硅基热电材料。我们的研究结果表明,纳米结构化的超晶格结构可以进一步降低热导率,同时将电传输性能保持在可比的整体水平,并且为增强硅基纳米结构的热电性能提供了新的策略。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第8期|085105.1-085105.11|共11页
  • 作者单位

    Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany;

    Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China;

    School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China;

    Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany,Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号