首页> 外文学位 >Charge Transport in Molecular Junctions: A Study of Level-Alignment, Thermoelectric Properties, and Environmental Effects.
【24h】

Charge Transport in Molecular Junctions: A Study of Level-Alignment, Thermoelectric Properties, and Environmental Effects.

机译:分子结中的电荷传输:能级排列,热电性质和环境效应的研究。

获取原文
获取原文并翻译 | 示例

摘要

Here, we use and develop first-principles methods based on density functional theory (DFT) and beyond to understand and predict charge transport phenomena in the novel class of nanostructured devices: molecular junctions. Molecular junctions, individual molecules contacted to two metallic leads, which can be systematically altered by modifying the chemistry of each component, serve as test beds for the study of transport at the nanoscale. To date, various experimental methods have been designed to reliably assemble and measure transport properties of molecular junctions. Furthermore, theoretical methods built on DFT designed to yield quantitative agreement with these experiments for certain classes of molecular junctions have been developed. In order to gain insight into a broader range of molecular junctions and environmental effects associated with the surrounding solution, this dissertation will employ, explore and extend first-principles DFT calculations coupled with approximate self-energy corrections known to yield quantitative agreement with experiments for certain classes of molecular junctions.;To start we examine molecular junctions in which the molecule is strongly hybridized with the leads: a challenging limit for the existing methodology. Using a physically motivated tight-binding model, we find that the experimental trends observed for such molecules can be explained by the presence of a so-called "gateway" state associated with the chemical bond that bridges the molecule and the lead. We discuss the ingredients of a self-energy corrected DFT based approach to quantitatively predict conductance in the presence of these hybridization effects.;We also develop and apply an approach to account for the surrounding environment on the conductance, which has been predominantly ignored in past transport calculations due to computational complexity. Many experiments are performed in a solution of non-conducting molecules; far from benign, this solution is known to impact the measured conductance by as much as a factor of two. Here, we show that the dominant effect of the solution stems from nearby molecules binding to the lead surface surrounding the junction and altering the local electrostatics. This effect operates in much the same way adsorbates alter the work function of a surface. We develop a framework which implicitly includes the surrounding molecules through an electrostatic-based lattice model with parameters from DFT calculations, reducing the computational complexity of this problem while retaining predictive power. Our approach for computing environmental effects on charge transport in such junctions will pave the way for a better understanding of the physics of nanoscale devices, which are known to be highly sensitive to their surroundings.
机译:在这里,我们使用和开发基于密度泛函理论(DFT)及其它以外的第一性原理的方法来理解和预测新型纳米结构器件:分子结中的电荷传输现象。分子连接,即与两个金属引线接触的单个分子,可以通过改变每种组分的化学性质来系统地改变,它们是研究纳米级迁移的试验床。迄今为止,已经设计了各种实验方法来可靠地组装和测量分子结的传输性质。此外,已经开发出了基于DFT的理论方法,这些理论旨在为某些类型的分子连接提供与这些实验的定量一致性。为了深入了解与周围溶液相关的更大范围的分子连接和环境影响,本论文将采用,探索和扩展第一性原理DFT计算以及已知的近似自能校正,从而与某些实验产生定量一致性。首先,我们检查分子与引线强烈杂交的分子连接:对现有方法的挑战性限制。使用具有物理动机的紧密结合模型,我们发现对于此类分子观察到的实验趋势可以通过与桥接分子和铅的化学键相关的所谓“网关”状态的存在来解释。我们讨论了一种基于自能量校正DFT的方法的成分,该方法可在存在这些杂交效应的情况下定量预测电导率。;我们还开发并应用了一种解决电导率周围环境的方法,该方法在过去主要被忽略由于计算复杂性,运输计算。许多实验都是在非导电分子的溶液中进行的。远非良性的,已知这种解决方案对测得的电导的影响最大为两倍。在这里,我们表明溶液的主要作用源自附近的分子与围绕结的引线表面结合并改变局部静电。这种作用的作用方式几乎与被吸附物改变表面功函数的方式相同。我们开发了一个框架,该框架通过基于DFT计算的参数的基于静电的晶格模型隐式包括周围的分子,从而在保留预测能力的同时,降低了此问题的计算复杂性。我们用于计算此类结中电荷传输的环境影响的方法将为更好地了解纳米级设备的物理特性铺平道路,纳米级设备对周围环境高度敏感。

著录项

  • 作者

    Kotiuga, Michele.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号