首页> 外文期刊>Journal of Applied Physics >Elucidation of the atomic-scale mechanism of the anisotropic oxidation rate of 4H-SiC between the (0001) Si-face and (0001) C-face by using a new Si-O-C interatomic potential
【24h】

Elucidation of the atomic-scale mechanism of the anisotropic oxidation rate of 4H-SiC between the (0001) Si-face and (0001) C-face by using a new Si-O-C interatomic potential

机译:通过使用新的Si-O-C原子间电势阐明(0001)Si面与(0001)C面之间4H-SiC各向异性氧化速率的原子尺度机理

获取原文
获取原文并翻译 | 示例
           

摘要

Silicon carbide (SiC) is an attractive semiconductor material for applications in power electronic devices. However, fabrication of a high-quality SiC/SiO2 interface has been a challenge. It is well-known that there is a great difference in the oxidation rate between the Si-face and the C-face and that the quality of oxide on the Si-face is greater than that on the C-face. However, the atomistic mechanism of the thermal oxidation of SiC remains to be solved. In this paper, a new Si-O-C inter-atomic potential was developed to reproduce the kinetics of the thermal oxidation of SiC. Using this newly developed potential, large-scale SiC oxidation simulations at various temperatures were performed. The results showed that the activation energy of the Si-face is much larger than that of the C-face. In the case of the Si-face, a flat and aligned interface structure including Si1+ was created. Based on the estimated activation energies of the intermediate oxide states, it is proposed that the stability of the flat interface structure is the origin of the high activation energy of the oxidation of the Si-face. In contrast, in the case of the C-face, it is found that the Si atom at the interface is easily pulled up by the O atoms. This process generates the disordered interface and decreases the activation energy of the oxidation. It is also proposed that many excess C atoms are created in the case of the C-face. Published by AIP Publishing.
机译:碳化硅(SiC)是用于电力电子设备的有吸引力的半导体材料。然而,制造高质量的SiC / SiO2界面一直是一个挑战。众所周知,Si面和C面之间的氧化速率有很大差异,并且Si面上的氧化物的质量大于C面上的氧化物的质量。然而,SiC热氧化的原子机理仍有待解决。在本文中,开发了一种新的Si-O-C原子间电势来重现SiC热氧化的动力学。利用这一新开发的潜力,在各种温度下进行了大规模SiC氧化模拟。结果表明,Si面的活化能远大于C面的活化能。对于Si面,创建了包括Si1 +在内的平坦且对齐的界面结构。基于估计的中间氧化物态的活化能,提出平坦界面结构的稳定性是Si面氧化的高活化能的来源。相反,在C面的情况下,发现在界面处的Si原子容易被O原子上拉。该过程产生无序的界面并降低了氧化的活化能。还建议在C面的情况下产生许多过量的C原子。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第18期|185303.1-185303.6|共6页
  • 作者单位

    Univ Tokyo, Sch Engn, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan;

    Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan;

    Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan;

    Fujitsu Labs Ltd, 10-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430197, Japan;

    Univ Tokyo, Sch Engn, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan;

    Univ Tokyo, Sch Engn, Dept Mech Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号