首页> 外文期刊>Journal of Applied Mathematics and Computing >Asymptotic behavior for non-oscillatory solutions of difference equations with several delays in the neutral term
【24h】

Asymptotic behavior for non-oscillatory solutions of difference equations with several delays in the neutral term

机译:中立项具有多个时滞的差分方程非振动解的渐近行为

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we first consider difference equations with several delays in the neutral term of the form * $$Deltaleft(y_{n}+sum_{i=1}^{L}p_{i}y_{n-{k_{i}}}-sum_{j=1}^{M}r_{j}y_{n-{rho_{j}}}right)+q_{n}y_{n-tau}=0quad mbox{for} ninmathbb{Z}^{+}(0),$$ study various cases of coefficients in the neutral term and obtain the asymptotic behavior for non-oscillatory solution of (*) under some hypotheses. Moreover, we consider reaction-diffusion difference equations with several delays in the neutral term of the form $$begin{array}{l}Delta_{1}left(u_{n,m}+displaystyle sum_{i=1}^{L}p_{i}u_{n-{k_{i}},m}-displaystyle sum_{j=1}^{M}r_{j}u_{n-{rho_{j}},m}right)+q_{n,m}u_{n-tau,m}[18pt]quad {}=a^{2}Delta_{2}^{2}u_{n+1,m-1}end{array}$$ for (n,m)∈?+(0)×Ω, study various cases of coefficients in the neutral term and obtain the asymptotic behavior for non-oscillatory solution under some hypotheses.
机译:在本文中,我们首先考虑具有以下延迟的差分方程:* $$ Deltaleft(y_ {n} + sum_ {i = 1} ^ {L} p_ {i} y_ {n- {k_ { i}}}-sum_ {j = 1} ^ {M} r_ {j} y_ {n- {rho_ {j}}}右)+ q_ {n} y_ {n-tau} = 0quad mbox {for} ninmathbb {Z} ^ {+}(0),$$研究中性项下系数的各种情况,并在某些假设下获得(*)非振动解的渐近行为。此外,我们考虑中性项$$ begin {array} {l} Delta_ {1} left(u_ {n,m} + displaystyle sum_ {i = 1} ^ { L} p_ {i} u_ {n- {k_ {i}},m} -displaystyle sum_ {j = 1} ^ {M} r_ {j} u_ {n- {rho_ {j}},m}(右) + q_ {n,m} u_ {n-tau,m} [18pt] quad {} = a ^ {2} Delta_ {2} ^ {2} u_ {n + 1,m-1} end {array} $对于(n,m)∈?+ (0)×Ω的$,研究中性项系数的各种情况,并在某些假设下获得非振动解的渐近行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号