首页> 外文期刊>Journal of Applied Mathematics and Computing >Mean square exponential stability in high-order stochastic impulsive neural networks with time-varying delays
【24h】

Mean square exponential stability in high-order stochastic impulsive neural networks with time-varying delays

机译:具有时变时滞的高阶随机脉冲神经网络的均方指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider a class of stochastic impulsive high-order neural networks with time-varying delays. By using Lyapunov functional method, LMI method and mathematics induction, some sufficient conditions are derived for the globally exponential stability of the equilibrium point of the neural networks in mean square. It is believed that these results are significant and useful for the design and applications of impulsive stochastic high-order neural networks.
机译:在本文中,我们考虑一类具有时变时滞的随机脉冲高阶神经网络。通过使用Lyapunov泛函方法,LMI方法和数学归纳法,得出了均方神经网络平衡点的全局指数稳定性的一些充分条件。相信这些结果对于脉冲式随机高阶神经网络的设计和应用是有意义的和有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号