首页> 外文期刊>Journal of Applied Mathematics and Computing >Existence and uniqueness result for a backward stochastic differential equation whose generator is Lipschitz continuous in y and uniformly continuous in z
【24h】

Existence and uniqueness result for a backward stochastic differential equation whose generator is Lipschitz continuous in y and uniformly continuous in z

机译:向后随机微分方程存在的唯一性,其生成器在y上为Lipschitz连续,在z上为一致连续

获取原文
获取原文并翻译 | 示例

摘要

In this note, we extend the result in Lepetier and San Martin (Stat. Probab. Lett. 32:425–430, 1997) by eliminating the condition that (g(t,0,0)) t∈[0,T] is a bounded process. Furthermore, we prove that if g is Lipschitz continuous in y and uniformly continuous in z, and (g(t,0,0)) t∈[0,T] is square integrable, then for each square integrable terminal condition ξ, there exists a unique square integrable adapted solution to the one-dimensional backward stochastic differential equation (BSDE) with the generator g, which generalizes the corresponding (one-dimensional) results in Pardoux and Peng (Syst. Control Lett. 14:55–61, 1990), Jia (C. R. Acad. Sci. Paris, Ser. I 346:439–444, 2008) and Jia (Stat. Probab. Lett. 79:436–441, 2009).
机译:在本注释中,我们通过消除(g(t,0,0))t∈[0的条件,扩展了Lepetier和San Martin(Stat。Probab。Lett。32:425–430,1997)中的结果,T] 是一个有界过程。此外,我们证明如果g是Lipschitz在y处连续且在z上均匀地连续,并且(g(t,0,0))t∈[0,T] 是平方可积的,则对于每个平方可积终极条件ξ,使用生成器g对一维后向随机微分方程(BSDE)存在唯一的平方可积自适应解,从而推广了Pardoux和Peng(系统控制lett)中的对应(一维)结果。 。1990:14:55–61),贾(J. Acad。Sci。Paris,Ser。I 346:439–444,2008)和贾(Stat。Probab。Lett。79:436-441,2009)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号