...
首页> 外文期刊>Journal of the American statistical association >Rao-Blackwellization for Bayesian Variable Selection and Model Averaging in Linear and Binary Regression: A Novel Data Augmentation Approach
【24h】

Rao-Blackwellization for Bayesian Variable Selection and Model Averaging in Linear and Binary Regression: A Novel Data Augmentation Approach

机译:用于线性和二元回归的贝叶斯变量选择和模型平均的Rao-Blackwellization:一种新的数据增强方法

获取原文
获取原文并翻译 | 示例

摘要

Choosing the subset of covariates to use in regression or generalized linear models is a ubiquitous problem. The Bayesian paradigm addresses the problem of model uncertainty by considering models corresponding to all possible subsets of the covariates, where the posterior distribution over models is used to select models or combine them via Bayesian model averaging (BMA). Although conceptually straightforward, BMA is often difficult to implement in practice, since either the number of covariates is too large for enumeration of all subsets, calculations cannot be done analytically, or both. For orthogonal designs with the appropriate choice of prior, the posterior probability of any model can be calculated without having to enumerate the entire model space and scales linearly with the number of predictors, p. In this article we extend this idea to a much broader class of nonorthogonal design matrices. We propose a novel method which augments the observed nonorthogonal design by at most p new rows to obtain a design matrix with orthogonal columns and generate the "missing" response variables in a data augmentation algorithm. We show that our data augmentation approach keeps the original posterior distribution of interest unaltered, and develop methods to construct Rao-Blackwellized estimates of several quantities of interest, including posterior model probabilities of any model, which may not be available from an ordinary Gibbs sampler. Our method can be used for BMA in linear regression and binary regression with nonorthogonal design matrices in conjunction with independent "spike and slab" priors with a continuous prior component that is a Cauchy or other heavy tailed distribution that may be represented as a scale mixture of normals. We provide simulated and real examples to illustrate the methodology. Supplemental materials for the manuscript are available online.
机译:选择在回归模型或广义线性模型中使用的协变量子集是一个普遍存在的问题。贝叶斯范式通过考虑与协变量的所有可能子集相对应的模型来解决模型不确定性的问题,其中模型的后验分布用于选择模型或通过贝叶斯模型平均(BMA)组合它们。尽管从概念上讲简单明了,但是BMA在实践中通常很难实现,因为协变量的数量太大,无法枚举所有子集,或者无法解析地进行计算,或者两者兼而有之。对于具有适当先验选择的正交设计,可以计算任何模型的后验概率,而不必枚举整个模型空间,并且可以随预测变量p线性地缩放。在本文中,我们将这一思想扩展到了更广泛的非正交设计矩阵类别。我们提出了一种新颖的方法,该方法最多可将新的p行增加观察到的非正交设计,以获得具有正交列的设计矩阵,并在数据增强算法中生成“缺失”响应变量。我们证明了我们的数据扩充方法使原始的后验分布保持不变,并开发了构建Rao-Blackwellized感兴趣量估计值的方法,包括任何模型的后验模型概率,而普通的吉布斯采样器可能无法提供。我们的方法可用于BMA在线性回归和二元回归中与非正交设计矩阵结合独立的“尖峰和平板”先验,并且具有连续的先验分量,该分量是柯西或其他重尾分布,可以表示为常态。我们提供了模拟的和真实的示例来说明该方法。可在线获取有关手稿的补充材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号