首页> 中国专利> 基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型和方法

基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型和方法

摘要

本发明提供一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,为Python语言的贝叶斯岭回归模型,并进一步提供了该贝叶斯岭回归模型的模型参数。还提供了基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法。本发明的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型能够快速、准确的获取水稻地上部糖氮比信息,克服水稻组分复杂带来的光谱叠加效应造成的水稻地上部糖氮比特征波段难以确定的困难,降低数据分布以及离群值等因素对建模精度的影响,从而提高水稻地上部糖氮比反演模型精度,设计巧妙,计算简便,易于实现,成本低,适于去大规模推广应用。

著录项

  • 公开/公告号CN112362659A

    专利类型发明专利

  • 公开/公告日2021-02-12

    原文格式PDF

  • 申请/专利权人 淮阴师范学院;

    申请/专利号CN202011349265.4

  • 申请日2020-11-26

  • 分类号G01N21/84(20060101);G06F17/18(20060101);G06N20/00(20190101);

  • 代理机构31314 上海大视知识产权代理事务所(特殊普通合伙);

  • 代理人顾小伟

  • 地址 223300 江苏省淮安市淮阴区长江西路111号

  • 入库时间 2023-06-19 09:54:18

说明书

技术领域

本发明涉及农业遥感技术领域,特别涉及水稻地上部糖氮比测量技术领域,具体是指一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型和方法。

背景技术

水稻地上部糖氮比是水稻地上部可溶性糖含量和全氮含量的比值,是水稻生产中反映水稻植株内碳氮代谢的重要生长诊断指标,同时,也是反映水稻植株生理状况、生长活性以及抗病力强弱的重要指标。水稻地上部糖氮比是农业生态以及全球变化领域广泛考虑的重要因子,是各种生态模型的重要输入参数,也是提高水稻产量、改善品质的生理基础。水稻地上部糖氮比受水稻光合能力、环境温度以及肥水等因素的影响,反映了水稻生理、长势以及肥水状况(周冬琴,朱艳,杨杰,等.基于冠层高光谱参数的水稻叶片碳氮比监测[J].农业工程学报,2009,25(03):135-141)。

监测水稻地上部糖氮比,不仅可以保证水稻生产的产量和品质,同时能够动态管理水稻的水肥施用,减少水稻生产中水肥的使用量,从而产生显著的经济和社会效益(薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J].作物学报,2006,032(003):430-435)。传统的水稻地上部糖氮比的监测主要采用破坏性采样的方法,需要在室内进行,测定过程复杂,需要投入大量的人力,费时费力,且时效性差,无法及时的获取水稻的地上部糖氮比,难以推广应用和快速获取其信息。

水稻的生理生化过程中,植株体内某些特定物质和细胞结构的变化,导致了水稻反射光谱的改变。因此,可以用光谱的变化来获取水稻地上部糖氮比等生长信息(周冬琴.基于冠层反射光谱的水稻氮素营养与籽粒品质监测[D].南京农业大学,2007)。目前,使用高光谱来监测水稻的生长状态已经在作物生长监测中得到了应用。随着光谱技术的发展和普及,使用光谱可以快捷迅速的获取水稻地上部糖氮比信息已经成为越来越多水稻生产从业者和研究人员的共识。最常用的方式是使用便携式全波段光谱仪获取水稻生长信息,选择能够反映地上部糖氮比的特征波段构建反演模型。在构建水稻地上部糖氮比反演模型的过程中,使用了全波段光谱仪所测定的光谱范围涵盖了350nm~2500nm,然而水稻组分复杂,组分光谱特征波段部分重叠,水稻地上部糖氮比特征光谱的确定困难。另外,由于水稻地上部糖氮比收到水稻生理生化状态影响,加上采样困难、测定流程复杂、工作量大,所采集的用于模型构建或者训练的数据集可能存在数据分布不均匀的想象,导致了数据“病态”,采用常规的建模方法导致模型结果精度低。同时高光谱数据的快速处理成为基于高光谱数据估测水稻地上部糖氮比的亟待解决的技术问题。

因此,希望提供一种水稻地上部糖氮比遥感反演模型,其能够快速、准确的获取水稻地上部糖氮比信息,克服水稻组分复杂带来的光谱叠加效应造成的水稻地上部糖氮比特征波段难以确定的困难,降低数据分布以及离群值等因素对建模精度的影响,从而提高水稻地上部糖氮比反演模型精度。

发明内容

为了克服上述现有技术中的缺点,本发明的一个目的在于提供一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,其能够快速、准确的获取水稻地上部糖氮比信息,克服水稻组分复杂带来的光谱叠加效应造成的水稻地上部糖氮比特征波段难以确定的困难,降低数据分布以及离群值等因素对建模精度的影响,从而提高水稻地上部糖氮比反演模型精度,适于大规模推广应用。

本发明的另一目的在于提供一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,其设计巧妙,计算简便,易于实现,成本低,适于大规模推广应用。

本发明的另一目的在于提供一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法,其能够快速、准确的获取水稻地上部糖氮比信息,克服水稻组分复杂带来的光谱叠加效应造成的水稻地上部糖氮比特征波段难以确定的困难,降低数据分布以及离群值等因素对建模精度的影响,从而提高水稻地上部糖氮比反演精度,适于大规模推广应用。

本发明的另一目的在于提供一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法,其设计巧妙,操作简单方便,成本低,适于大规模推广应用。

为达到以上目的,在本发明的第一方面,提供一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,其特点是,所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型为Python语言的贝叶斯岭回归模型,所述贝叶斯岭回归模型的模型参数为:'lambda_1'=0.44074460095265916,'alpha_2'=0.44968516661298036,'tol'=0.488737648781788669,'lambda_init'=2.7053429660977777,'n_iter'=7667418,'alpha_init'=2.4852362410796833,'lambda_2'=0.5488779445952601,'alpha_1'=0.7307562218857118。

较佳地,所述贝叶斯岭回归模型采用水稻的数据集训练而成,所述数据集包括所述水稻的m个样点的冠层反射率和地上部糖氮比,m个所述样点均匀分布在水稻种植区域,所述冠层反射率为n个特征波段的冠层反射率。

更佳地,所述m为36,所述n个特征波段为2151个特征波段,所述2151个特征波段为从350nm波段至2500nm波段。

在本发明的第二方面,提供了一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法,其特点是,包括以下步骤:

(1)测量水稻的冠层反射率;

(2)测量所述水稻的地上部糖氮比;

(3)以所述冠层反射率为输入数据,采用Python语言的贝叶斯岭回归模型进行计算,获得反演值,根据所述反演值与所述地上部糖氮比计算决定系数R

(4)以所述冠层反射率为所述输入数据,以所述地上部糖氮比为输出结果,训练所述贝叶斯岭回归模型,根据所述模型参数调优秩次矩阵依次对所述模型参数进行调优,获得所述模型参数的调优值;

(5)以所述冠层反射率为所述输入数据,以所述地上部糖氮比为所述输出结果,采用所述的模型参数的调优值,训练所述贝叶斯岭回归模型,待所述贝叶斯岭回归模型训练结束后,获得基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,使用save方法保存所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,如果需要使用所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,使用load方法加载所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型使用。

较佳地,在所述步骤(1)中,所述测量采用高光谱辐射仪进行,所述测量的时间为10:00~14:00,所述高光谱辐射仪采用视场角为25°的镜头,所述便携式野外高光谱辐射仪的传感器探头垂直指向所述水稻的冠层并距离所述冠层的顶层的垂直高度为1米,所述传感器探头的地面视场范围直径为0.44米,所述传感器探头迎向阳光,所述测量采用标准板进行校正,所述标准板是反射率为95%~99%的标准白板。

较佳地,在所述步骤(2)中,所述的测量所述水稻的地上部糖氮比的步骤具体包括:

采集所述水稻的地上部分植株,测定可溶性糖含量以及测定全氮含量,所述可溶性糖含量和所述全氮含量的比值即为所述地上部糖氮比。

更佳地,在所述步骤(2)中,所述测定可溶性糖含量采用蒽酮比色法,所述测定全氮含量采用半微量凯氏定氮法。

较佳地,在所述步骤(3)中,所述模型参数调优秩次矩阵为:

Params={'lambda_1','alpha_2','tol','lambda_init','n_iter','alpha_init','lambda_2','alpha_1'}。

更佳地,在所述步骤(4)中,所述的模型参数的调优值为:

'lambda_1'=0.44074460095265916,'alpha_2'=0.44968516661298036,'tol'=0.488737648781788669,'lambda_init'=2.7053429660977777,'n_iter'=7667418,'alpha_init'=2.4852362410796833,'lambda_2'=0.5488779445952601,'alpha_1'=0.7307562218857118。

较佳地,在所述步骤(1)中,所述的测量水稻的冠层反射率的步骤具体为测量水稻种植区域的m个样点的所述冠层反射率,m个所述样点均匀分布在所述水稻种植区域,所述冠层反射率为n个特征波段的冠层反射率;在所述步骤(2)中,所述的测量所述水稻的地上部糖氮比的步骤具体为测量该m个所述样点的所述地上部糖氮比。

更佳地,在所述步骤(1)中,所述m为36,所述n个特征波段为2151个特征波段,所述2151个特征波段为从350nm波段至2500nm波段。

本发明的有益效果主要在于:

1、本发明的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型为Python语言的贝叶斯岭回归模型,贝叶斯岭回归模型的模型参数为:'lambda_1'=0.44074460095265916,'alpha_2'=0.44968516661298036,'tol'=0.488737648781788669,'lambda_init'=2.7053429660977777,'n_iter'=7667418,'alpha_init'=2.4852362410796833,'lambda_2'=0.5488779445952601,'alpha_1'=0.7307562218857118,对该模型进行检验,R

2、本发明的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型为Python语言的贝叶斯岭回归模型,贝叶斯岭回归模型的模型参数为:'lambda_1'=0.44074460095265916,'alpha_2'=0.44968516661298036,'tol'=0.488737648781788669,'lambda_init'=2.7053429660977777,'n_iter'=7667418,'alpha_init'=2.4852362410796833,'lambda_2'=0.5488779445952601,'alpha_1'=0.7307562218857118,对该模型进行检验,R

3、本发明的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法,包括:测量水稻的冠层反射率;测量水稻的地上部糖氮比:以冠层反射率为输入数据,采用Python语言的贝叶斯岭回归模型进行计算,以决定系数R

4、本发明的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法,包括:测量水稻的冠层反射率;测量水稻的地上部糖氮比:以冠层反射率为输入数据,采用Python语言的贝叶斯岭回归模型进行计算,以决定系数R

本发明的这些和其它目的、特点和优势,通过下述的详细说明、附图和权利要求得以充分体现,并可通过所附权利要求中特地指出的手段、装置和它们的组合得以实现。

附图说明

图1是本发明的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法的一具体实施例的流程示意图。

图2是图1所示的具体实施例的模型构建流程示意图。

图3是图1所示的具体实施例的模型检验结果示意图。

具体实施方式

本发明人针对基于高光谱估测水稻地上部糖氮比的需求,克服了因水稻组分复杂而导致的水稻地上部糖氮比特征波段难以确定以及高光谱数据特征波段筛选费时费力的困难,提出了一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型为Python语言的贝叶斯岭回归模型,所述贝叶斯岭回归模型的模型参数为:'lambda_1'=0.44074460095265916,'alpha_2'=0.44968516661298036,'tol'=0.488737648781788669,'lambda_init'=2.7053429660977777,'n_iter'=7667418,'alpha_init'=2.4852362410796833,'lambda_2'=0.5488779445952601,'alpha_1'=0.7307562218857118。

所述贝叶斯岭回归模型可以采用任何合适的数据集训练而成,较佳地,所述贝叶斯岭回归模型采用水稻的数据集训练而成,所述数据集包括所述水稻的m个样点的冠层反射率和地上部糖氮比,m个所述样点均匀分布在水稻种植区域,所述冠层反射率为n个特征波段的冠层反射率。所述水稻种植区域可以是多个生态点、多个品种的水稻种植区域。

所述m和所述n为正整数,可以根据需要确定,更佳地,所述m为36,所述n个特征波段为2151个特征波段,所述2151个特征波段为从350nm波段至2500nm波段。

本发明还提供了一种基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法,包括以下步骤:

(1)测量水稻的冠层反射率;

(2)测量所述水稻的地上部糖氮比;

(3)以所述冠层反射率为输入数据,采用Python语言的贝叶斯岭回归模型进行计算,获得反演值,根据所述反演值与所述地上部糖氮比计算决定系数R

(4)以所述冠层反射率为所述输入数据,以所述地上部糖氮比为输出结果,训练所述贝叶斯岭回归模型,根据所述模型参数调优秩次矩阵依次对所述模型参数进行调优,获得所述模型参数的调优值;

(5)以所述冠层反射率为所述输入数据,以所述地上部糖氮比为所述输出结果,采用所述的模型参数的调优值,训练所述贝叶斯岭回归模型,待所述贝叶斯岭回归模型训练结束后,获得基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,使用save方法保存所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,如果需要使用所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,使用load方法加载所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型使用。

在所述步骤(1)中,所述测量可以采用任何合适的光谱仪和方法进行,较佳地,在所述步骤(1)中,所述测量采用高光谱辐射仪进行,所述测量的时间为10:00~14:00,所述高光谱辐射仪采用视场角为25°的镜头,所述便携式野外高光谱辐射仪的传感器探头垂直指向所述水稻的冠层并距离所述冠层的顶层的垂直高度为1米,所述传感器探头的地面视场范围直径为0.44米,所述传感器探头迎向阳光,所述测量采用标准板进行校正,所述标准板是反射率为95%~99%的标准白板。

在所述步骤(2)中,所述的测量所述水稻的地上部糖氮比的步骤可以具体包括任何合适的方法,较佳地,在所述步骤(2)中,所述的测量所述水稻的地上部糖氮比的步骤具体包括:

采集所述水稻的地上部分植株,测定可溶性糖含量以及测定全氮含量,所述可溶性糖含量和所述全氮含量的比值即为所述地上部糖氮比。

在所述步骤(2)中,所述测定可溶性糖含量和所述测定全氮含量可以采用任何合适的方法,更佳地,在所述步骤(2)中,所述测定可溶性糖含量采用蒽酮比色法,所述测定全氮含量采用半微量凯氏定氮法。

在所述步骤(3)中,所述模型参数调优秩次矩阵根据决定系数R

Params={'lambda_1','alpha_2','tol','lambda_init','n_iter','alpha_init','lambda_2','alpha_1'}。

在所述步骤(4)中,所述的模型参数的调优值根据所述模型参数调优秩次矩阵依次确定,更佳地,在所述步骤(4)中,所述的模型参数的调优值为:

'lambda_1'=0.44074460095265916,'alpha_2'=0.44968516661298036,'tol'=0.488737648781788669,'lambda_init'=2.7053429660977777,'n_iter'=7667418,'alpha_init'=2.4852362410796833,'lambda_2'=0.5488779445952601,'alpha_1'=0.7307562218857118。

为了使得所述的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型的精度更高,可以选取水稻种植区域的多个样点,测定多个样点的多个特征波段的冠层反射率以及多个样点的地上部糖氮比,较佳地,在所述步骤(1)中,所述的测量水稻的冠层反射率的步骤具体为测量水稻种植区域的m个样点的所述冠层反射率,m个所述样点均匀分布在所述水稻种植区域,所述冠层反射率为n个特征波段的冠层反射率;在所述步骤(2)中,所述的测量所述水稻的地上部糖氮比的步骤具体为测量该m个所述样点的所述地上部糖氮比。

在所述步骤(1)中,所述m和所述n为正整数,可以根据需要确定,更佳地,在所述步骤(1)中,所述m为36,所述n个特征波段为2151个特征波段,所述2151个特征波段为从350nm波段至2500nm波段。

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。

实施例

本实施例的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法基于实测高光谱数据,采用了水稻种植区域(江苏省淮安市农业科学研究院淮安地区稻麦种植基地,水稻品种为淮稻5号,采样时期为水稻拔节期)采集的水稻冠层反射率光谱数据以及水稻地上部糖氮比数据,共48个采样点,这些采样点均匀分布并完全覆盖水稻种植区域整个区域。48个采样点数据采用随机的方法分为两部分,其中36个采样点的数据用于模型构建,12个采样点数据用于模型检验。基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演方法的流程如图1所示,包括如下步骤:

1.光谱测定。

水稻冠层光谱测定使用美国ASD生产的FieldSpec Pro便携式野外高光谱辐射仪,选择在天气晴朗、无风或者风速很小时进行,时间范围10:00~14:00,采样测试人员身着深色服饰,减少对光谱仪的影响或者干扰。采样时,选用视场角为25°的镜头,传感器探头垂直指向测量目标---冠层,距离冠层顶层垂直高度约1米,地面视场范围直径为0.44米,迎向阳光,取测量10次的反射光谱平均值,作为该采样点的光谱数据。测量过程中,对每个采样点的测量前后进行标准白板校正。如果测试过程中,环境光场分布发生变化,亦进行标准白板校正,本例使用的标准白板的反射率为99%。测定的光谱数据使用FieldSpec Pro便携式野外高光谱辐射仪随机软件RS3或者ViewSpec Pro软件检查,剔除异常光谱文件,对光谱数据进行插值计算,得到范围为350nm~2500nm,分辨率为1nm的光谱数据,计算光谱平行采样光谱的平均值,最后导出光谱数据并保存为ASCII文件。

2.水稻地上部糖氮比测定

收集均匀分布于每个采样点的光谱测量视场的水稻地上部分植株,数量为3穴,用吸水纸包好,带回实验室,在105摄氏度下杀青30分钟,于80摄氏度下烘干至恒重。样品粉碎后,使用半微量凯氏定氮法测定全氮含量(NC)(%重量),用蒽酮比色法测定样品可溶性总糖含量(SC)(%重量)(李酉开.土壤农业化学常规分析方法[M].北京科学出版社,1983,79-272),水稻地上部糖氮比采用下式进行计算:

CNR=SC/NC,

其中,SNR为水稻地上部糖氮比,SC为可溶性糖含量,NC为全氮含量。

3.模型构建

模型构建采用Python语言的贝叶斯岭回归模型进行构建,请参见图2所示,模型构建主要包括以下步骤:

3.1数据校验

对获取的水稻冠层反射率数据进行校验,剔除异常的整条光谱曲线数据。本发明中异常光谱是指相邻光谱变化超过100%,且包含空值、负值的光谱值。

3.2数据的预处理

对校验后的水稻冠层反射率数据以及水稻地上部糖氮比数据进行预处理,包括去除包含缺失值和空值的成对水稻冠层反射率数据和水稻地上部糖氮比数据。

3.3数据集的划分

为保证模型训练和反演结果的合理评估,使用随机的方法,将整个数据集(48组)划分为两部分,75%(36组)的数据用于模型训练,25%(12组)的数据用于训练后的效果评估。

3.4训练数据集的划分

为保证模型训练的效果,使用随机的方法,在每次模型训练迭代时,将训练数据集划分为5个部分,对模型进行训练。

3.5模型参数调优秩次矩阵的构建

本发明中,模型训练过程模型参数的调优非常重要,为保证尽量获取最佳的模型调优,使用试错法进行模型参数调优。本发明使用决定系数R

根据训练数据集中冠层反射率数据和对应的地上部糖氮比数据,计算得到的模型参数调优秩次矩阵为:

Params={'lambda_1','alpha_2','tol','lambda_init','n_iter','alpha_init','lambda_2','alpha_1'}。

3.6模型构建

依据获取的模型参数调优秩次矩阵,将建模使用的数据,包括实测的冠层反射率数据和对应的实测的地上部糖氮比数据,以实测的冠层反射率数据为输入数据,实测的地上部糖氮比数据为输出结果,训练贝叶斯岭回归模型,根据模型参数调优秩次矩阵依次对模型参数进行调优,获得该模型完整参数及取值,如下:

'lambda_1'=0.44074460095265916,'alpha_2'=0.44968516661298036,'tol'=0.488737648781788669,'lambda_init'=2.7053429660977777,'n_iter'=7667418,'alpha_init'=2.4852362410796833,'lambda_2'=0.5488779445952601,'alpha_1'=0.7307562218857118。

待模型训练结束后,使用save方法保存模型,如需使用,运行load方法加载使用。

3.7模型检验

使用构建模型之外的12个采样点高光谱数据输入模型,使用调优后的模型参数进行计算,得到预测值,分析预测值与实测值(地上部糖氮比)的关系,结果如图3所示,模型的R

本案例训练数据和检验数据的随机划分以及模型的构建、训练和检验使用了美国MathWorks公司开发的Matlab软件(version:R2020a 9.8.0.1380330)以及Python(version:3.7.0),通过Matlab软件调用Python的贝叶斯岭回归模型。

因此,本发明提出了一种新的、基于实测高光谱遥感数据的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型,基于实测水稻冠层反射率数据和实地采集的水稻地上部糖氮比数据,可快速、准确的获取水稻地上部糖氮比信息,克服水稻组分复杂带来的光谱叠加效应造成的水稻地上部糖氮比特征波段难以确定的困难,并通过构建模型参数调优秩次矩阵,使用试错法对模型参数调优,有效降低了线性模型过拟合的现象,大大提高了水稻地上部糖氮比反演的精度,适用于不同生态区、不同品种以及主要生育期的水稻地上部糖氮比的定量反演,从而获得水稻生理状态以及水肥供给的状态,提高了水稻栽培种植过程中的生长信息获取效率,并为水稻生产中水分肥料运筹提供了基础科学数据。

与现有技术相比,本发明具有以下优点:

(1)本发明使用的贝叶斯岭回归模型(Bayesian Ridge Regression Model)适用于基于高光谱的水稻地上部糖氮比的反演,在综合考虑高光谱350~2500nm波段范围信息的基础上,考虑了水稻体内各种物质组成和细胞结构的光学特性,特别是复杂的组分对水稻地上部糖氮比特征波段的影响和叠加效应,充分利用遥感数据中不同波段包含的水稻地上部糖氮比信息,进行水稻地上部糖氮比的反演;

(2)使用了贝叶斯岭回归模型机器学习算法,构建350~2500nm反射率与水稻地上部糖氮比对数值的模型,可有效减少使用线性回归等模型出现的过拟合现象,尤其是数据分布和离群值等数据不均衡导致的模型精度低,提高基于高光谱信息的水稻地上部糖氮比反演的速度和效率;

(3)本发明充分考虑了模型训练和模型检验的独立性,使用随机分割的方法划分训练数据集和检验数据集,训练数据集只用于模型训练,检验数据集仅用于模型检验,以保证模型效果检验的合理性。

(4)由于模型的参数调优对于模型的计算精度非常重要,因此本发明中构建了模型参数秩次矩阵,以决定系数R

(5)本发明提出的水稻地上部糖氮比反演方法计算简便,适用于不同生态区、不同品种以及不同生育期的水稻地上部糖氮比的遥感定量反演,可准确的反演水稻地上部糖氮比,快速的获取水稻生理状况和长势等信息,同时为水稻种植栽培的水分肥料运筹管理提供科学数据。

综上,本发明的基于贝叶斯岭回归算法的水稻地上部糖氮比遥感反演模型能够快速、准确的获取水稻地上部糖氮比信息,克服水稻组分复杂带来的光谱叠加效应造成的水稻地上部糖氮比特征波段难以确定的困难,降低数据分布以及离群值等因素对建模精度的影响,从而提高水稻地上部糖氮比反演模型精度,设计巧妙,计算简便,易于实现,成本低,适于大规模推广应用。

由此可见,本发明的目的已经完整并有效的予以实现。本发明的功能及结构原理已在实施例中予以展示和说明,在不背离所述原理下,实施方式可作任意修改。所以,本发明包括了基于权利要求精神及权利要求范围的所有变形实施方式。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号