首页> 外文期刊>Journal of ambient intelligence and humanized computing >Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm
【24h】

Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm

机译:基于异常的入侵检测系统,采用多目标灰狼优化算法

获取原文
获取原文并翻译 | 示例

摘要

The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the most effective protection systems is intrusion detection system (IDS). The IDS is an intelligent system that monitors and inspects the network packets to identify the abnormal behavior. In addition, the network packets comprise many attributes and there are many attributes that are irrelevant and repetitive which degrade the performance of the IDS system and overwhelm the system resources. A feature selection technique helps to reduce the computation time and complexity by selecting the optimum subset of features. In this paper, an enhanced anomaly-based IDS model based on multi-objective grey wolf optimisation (GWO) algorithm was proposed. The GWO algorithm was employed as a feature selection mechanism to identify the most relevant features from the dataset that contribute to high classification accuracy. Furthermore, support vector machine was used to estimate the capability of selected features in predicting the attacks accurately. Moreover, 20% of NSL-KDD dataset was used to demonstrate effectiveness of the proposed approach through different attack scenarios. The experimental result revealed that the proposed approach obtains classification accuracy of (93.64%, 91.01%, 57.72%, 53.7%) for DoS, Probe, R2L, and U2R attack respectively. Finally, the proposed approach was compared with other existing approaches and achieves significant result.
机译:信息技术的快速发展导致增加与互联网连接的设备数量。此外,网络攻击量也增加了。因此,迫切需要设计精通发现新型攻击的防御系统。其中一个最有效的保护系统是入侵检测系统(ID)。 IDS是一个智能系统,可以监视和检查网络数据包以识别异常行为。另外,网络数据包包括许多属性,并且存在许多属性是无关紧要的,并且重复,这降低了ID系统的性能和压倒系统资源。特征选择技术通过选择最佳特征子集有助于降低计算时间和复杂性。本文提出了一种基于多目标灰狼优化(GWO)算法的增强的基于异常的IDS模型。 GWO算法作为特征选择机制,以识别来自数据集的最相关的功能,这些功能有助于高分类准确性。此外,支持向量机用于估计精确预测攻击时所选特征的能力。此外,20%的NSL-KDD数据集用于通过不同的攻击方案展示所提出的方法的有效性。实验结果表明,所提出的方法分别获得(93.64%,91.01%,57.72%,53.7%)分别用于DOS,探针,R2L和U2R攻击的分类精度。最后,将拟议的方法与其他现有方法进行比较并实现了重大结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号