首页> 外文期刊>Journal of ambient intelligence and humanized computing >Maximizing the earned benefit in an incentivized social networking environment: a community-based approach
【24h】

Maximizing the earned benefit in an incentivized social networking environment: a community-based approach

机译:在激励的社交网络环境中最大化赚取的福利:基于社区的方法

获取原文
获取原文并翻译 | 示例

摘要

Given a social network of users represented as a directed graph with edge weight as diffusion probability, the Social Influence Maximization Problem asks for selecting a set of highly influential users for initial activation to maximize the influence in the network. In this paper, we study a variant of this problem, where nodes are associated with a selection cost signifying the incentive demand; a fixed budget is allocated for the seed set selection process; a subset of the nodes is designated as the target nodes, and each of them is associated with a benefit value that can be earned by influencing the corresponding target user; and the goal is to choose a seed set within the allocated budget for maximizing the earned benefit. Formally, we call this problem as the Earned Benefit Maximization in Incentivized Social Networking Environment or Earned Benefit Maximization Problem (EBM Problem), in short. For this problem, we develop a priority-based ranking methodology having three steps. First, marking the effective nodes for the given target nodes; second, priority computation of the effective nodes and the third is to choose the seed nodes based on this priority value within the budget. We implement the proposed methodology with two publicly available social network datasets and observe that the proposed methodology can achieve more benefit compared to the baseline methods. To improve the proposed methodology, we exploit the community structure of the network. Experimental results show that the incorporation of community structure helps the proposed methodology to achieve more benefit without much increase in computational burden.
机译:鉴于作为扩散概率的边缘重量的指向图表的用户的社交网络,社会影响最大化问题要求选择一组高度影响力的用户,以便初始激活以最大化网络中的影响。在本文中,我们研究了这个问题的变体,其中节点与选择成本致力于激励需求;为种子设置选择过程分配固定预算;节点的子集被指定为目标节点,并且它们中的每一个与可以通过影响相应的目标用户来获得的益处值相关联;目标是选择在分配预算内的种子集,以最大限度地提高赚取的利益。正式,我们称之为激励社交网络环境中获得的福利最大化或赚取的福利最大化问题(EBM问题)。对于此问题,我们开发了一种基于优先的排名方法,具有三个步骤。首先,标记给定目标节点的有效节点;其次,有效节点的优先级计算和第三个是根据预算内的这种优先价值选择种子节点。我们用两个公开可用的社交网络数据集实施所提出的方法,并观察到与基线方法相比,所提出的方法可以实现更多的利益。为了提高所提出的方法,我们利用网络的社区结构。实验结果表明,群落结构的纳入有助于提出的方法在没有大量增加的计算负担的情况下实现更多益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号