首页> 外文期刊>Expert systems with applications >Earned benefit maximization in social networks under budget constraint
【24h】

Earned benefit maximization in social networks under budget constraint

机译:预算限制下的社交网络中赚取的福利最大化

获取原文
获取原文并翻译 | 示例

摘要

Given a social network where the users are associated with non-uniform selection cost, the problem of Budgeted Influence Maximization (BIM in short) asks for selecting a subset of the nodes within an allocated budget for initial activation, such that due to the cascading effect, influence in the network is maximized. In this paper, we study this problem with a variation, where a subset of the users are marked as target users, each of them is assigned with a benefit and this can be earned by influencing them. The goal here is to maximize the earned benefit by initially activating a set of nodes within the budget. This problem is referred to as the Earned Benefit Maximization Problem. First, we show that this problem is NP-Hard and the benefit function follows the monotonicity, sub-modularity property under the Independent Cascade Model of diffusion. We propose an incremental greedy strategy for this problem and show, with minor modification it gives (1 - 1 root e)-factor approximation guarantee on the earned benefit. Next, by exploiting the sub-modularity property of the benefit function, we improve the efficiency of the proposed greedy algorithm. Then, we propose a hop-based heuristic method, which works based on the computation of the 'expected earned benefit'. Finally, we perform a series of extensive experiments with four publicly available, real-life social network datasets. From the experiments, we observe that the seed sets selected by the proposed algorithms can achieve more benefit compared to many existing methods. Particularly, the hop-based approach is found to be more efficient than the other ones for solving this problem.
机译:给定用户与非均匀选择成本相关联的社交网络,预算影响最大化的问题(简称BIM)要求在分配的预算中选择节点的子集进行初始激活,例如由于级联效果,网络中的影响最大化。在本文中,我们研究了一个变型的这个问题,其中用户的子集被标记为目标用户,每个子集被分配有一个好处,可以通过影响它们来获得这一点。这里的目标是通过最初激活预算中的一组节点来最大化赚取的福利。此问题被称为赚取的益处最大化问题。首先,我们表明这个问题是NP - 硬,效益功能在独立级联的扩散模型下遵循单调性,子模块化特性。我们为此问题提出了一个增量的贪婪策略,并展示了次要修改,它给出了赚取的福利的(1 - 1根E) - 因素近似保证。接下来,通过利用益处功能的子模块性属性,我们提高了提出了贪婪算法的效率。然后,我们提出了一种基于跳跃的启发式方法,这是基于“预期赚取的福利”的计算。最后,我们执行一系列广泛的实验,具有四个公开的现实生活社交网络数据集。从实验中,我们观察到,与许多现有方法相比,所提出的算法选择的种子集可以实现更多的益处。特别是,发现基于跳跃的方法比其他用于解决这个问题的方法更有效。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号