首页> 外文期刊>Journal of Algebraic Combinatorics >Puzzles, tableaux, and mosaics
【24h】

Puzzles, tableaux, and mosaics

机译:拼图,马赛克和马赛克

获取原文
获取原文并翻译 | 示例

摘要

We define mosaics, which are naturally in bijection with Knutson-Tao puzzles. We define an operation on mosaics, which shows they are also in bijection with Littlewood-Richardson skew-tableaux. Another consequence of this construction is that we obtain bijective proofs of commutativity and associativity for the ring structures defined either of these objects. In particular, we obtain a new, easy proof of the Littlewood-Richardson rule. Finally we discuss how our operation is related to other known constructions, particularly jeu de taquin.
机译:我们定义了马赛克,这些马赛克自然与Knutson-Tao拼图融为一体。我们对镶嵌定义了一个操作,这表明它们也与Littlewood-Richardson偏斜-tableaux具有双射性。这种构造的另一个结果是,我们获得了定义这两个对象中任何一个的环结构的可交换性和缔合性的双射证明。特别是,我们获得了Littlewood-Richardson规则的新的简单证明。最后,我们讨论我们的操作如何与其他已知结构(特别是jeu de taquin)相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号