...
首页> 外文期刊>Japanese Journal of Applied Physics. Part 1, Regular Papers, Brief Communications & Review Papers >Comparison of Random-Dopant-Induced Threshold Voltage Fluctuation in Nanoscale Single-, Double-, and Surrounding-Gate Field-Effect Transistors
【24h】

Comparison of Random-Dopant-Induced Threshold Voltage Fluctuation in Nanoscale Single-, Double-, and Surrounding-Gate Field-Effect Transistors

机译:纳米级单栅,双栅和围栅场效应晶体管中随机掺杂引起的阈值电压波动的比较

获取原文
获取原文并翻译 | 示例

摘要

In this study, we explore random-dopant-induced threshold voltage fluctuation by solving a quantum correction model. Fluctuation of the threshold voltage for three nanoscale transistors, single-, double-, and surrounding-gate (SG, DG, and AG) metal-oxide-semiconductor field-effect transistors (MOSFETs) are computationally compared. To calculate the variance of the threshold voltages of the SG, DG, and AG MOSFETs, a quantum correction model under equilibrium conditions is expanded and numerically solved using perturbation and monotone iterative methods. Fluctuation of the threshold voltage resulting from the random dopant, gate oxide thickness, channel film thickness, gate channel length, and device width are calculated for the three devices. Quantum mechanical and classical results give similar predictions for fluctuation of the threshold voltage with respect to different parameters including the dimensions of the device and the channel doping. Fluctuation increases when the channel doping concentration, channel film thickness, and gate oxide thickness increase. On the other hand, it decreases when the channel length and device width increase. Calculation results of the quantum correction model are quantitatively higher than those of classical estimation in accordance with different quantum confinement effects in nanoscale SG, DG, and AG MOSFETs. It is found that the AG MOSFET has the smallest threshold voltage fluctuation among the three device structures due to its good channel controllability. In contrast to the conventional quantum Monte Carlo approach and the small-signal analysis of the Schrodinger-Poisson equations, this computationally cost-effective quantum correction approach shows acceptable accuracy and is ready for industrial technology computer-aided design application.
机译:在这项研究中,我们通过求解量子校正模型来探索随机掺杂剂引起的阈值电压波动。通过计算比较了三个纳米级晶体管,单栅,双栅和环绕栅(SG,DG和AG)金属氧化物半导体场效应晶体管(MOSFET)的阈值电压的波动。为了计算SG,DG和AG MOSFET的阈值电压的方差,扩展了平衡条件下的量子校正模型,并使用微扰和单调迭代方法对其进行了数值求解。对于这三个器件,计算了由随机掺杂剂,栅极氧化物厚度,沟道膜厚度,栅极沟道长度和器件宽度引起的阈值电压的波动。量子力学和经典结果对阈值电压相对于不同参数(包括器件尺寸和沟道掺杂)的波动给出了相似的预测。当沟道掺杂浓度,沟道膜厚度和栅极氧化物厚度增加时,波动增加。另一方面,当沟道长度和器件宽度增加时,它减小。根据纳米级SG,DG和AG MOSFET中不同的量子约束效应,量子校正模型的计算结果在数量上要比经典估计高。发现由于其良好的沟道可控制性,AG MOSFET在三种器件结构中具有最小的阈值电压波动。与传统的量子蒙特卡洛方法和Schrodinger-Poisson方程的小信号分析相比,这种计算上经济高效的量子校正方法显示出可接受的精度,并已准备好用于工业技术的计算机辅助设计应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号