首页> 外文期刊>Japanese Journal of Applied Physics. Part 2, Letters & Express Letters >On the Effects of Gate-Recess Etching in Current-Collapse of Different Cap Layers Grown AlGaN/GaN High-Electron-Mobility Transistors
【24h】

On the Effects of Gate-Recess Etching in Current-Collapse of Different Cap Layers Grown AlGaN/GaN High-Electron-Mobility Transistors

机译:栅凹槽蚀刻对生长AlGaN / GaN高电子迁移率晶体管的不同盖层的电流崩解的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Influences of gate-recess etching with BCl_3 plasma in drain current (I_D) collapse were performed on different cap layers (i-GaN, n-GaN, and p-GaN) grown AlGaN/GaN high-electron-mobility transistors (HEMTs). Due to the decrease of dynamic-source-resistance by gate-recess, the increase of maximum drain current density and maximum extrinsic transconductance were observed in all cap layers grown AlGaN/GaN HEMTs. After gate-recess etching, about 14 and 17% of decrease in I_D collapse were observed on n-GaN and p-GaN cap layers HEMTs, respectively when compared to nonrecessed HEMTs. However, increase (~47%) of I_D collapse was observed in i-GaN cap layer HEMTs. The decrease of I_D collapse in doped GaN cap layer HEMTs is possibly due to the compensation of dopant related traps with plasma induced traps. The increase of I_D collapse in i-GaN cap layer HEMTs may be due to the incorporation of damage related traps by gate-recess etching. The decrease and increase of trapping effects were qualitatively confirmed by white-light illuminated I_(DS)-V_(DS) characteristics. An increase of gate leakage current in all recessed gate AlGaN/GaN HEMTs are due to the BCl_3 plasma induced damage.
机译:在不同的盖层(i-GaN,n-GaN和p-GaN)上生长的AlGaN / GaN高电子迁移率晶体管(HEMT)上进行了BCl_3等离子体栅凹槽蚀刻在漏极电流(I_D)崩溃中的影响。由于栅极凹陷会降低动态源电阻,因此在所有盖层生长的AlGaN / GaN HEMT中都观察到最大漏极电流密度和最大非本征跨导的增加。在进行栅极凹槽蚀刻后,与非凹槽式HEMT相比,分别在n-GaN和p-GaN盖层HEMT上观察到I_D塌陷的减少分别约为14%和17%。但是,在i-GaN盖层HEMT中观察到I_D塌陷的增加(〜47%)。掺杂的GaN覆盖层HEMT中I_D塌陷的减少可能是由于用等离子体诱导的陷阱补偿了与掺杂剂有关的陷阱所致。 i-GaN盖层HEMT中I_D塌陷的增加可能是由于通过栅凹槽蚀刻引入了与损伤相关的陷阱。通过白光照射的I_(DS)-V_(DS)特性定性地证实了俘获效应的减少和增加。所有凹陷的栅极AlGaN / GaN HEMT中栅极泄漏电流的增加归因于BCl_3等离子体引起的损伤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号