首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >A deep learning framework for matching of SAR and optical imagery
【24h】

A deep learning framework for matching of SAR and optical imagery

机译:SAR和光学图像匹配的深度学习框架

获取原文
获取原文并翻译 | 示例

摘要

SAR and optical imagery provide highly complementary information about observed scenes. A combined use of these two modalities is thus desirable in many data fusion scenarios. However, any data fusion task requires measurements to be accurately aligned. While for both data sources images are usually provided in a georeferenced manner, the geo-localization of optical images is often inaccurate due to propagation of angular measurement errors. Many methods for the matching of homologous image regions exist for both SAR and optical imagery, however, these methods are unsuitable for SAR-optical image matching due to significant geometric and radiometric differences between the two modalities. In this paper, we present a three-step framework for sparse image matching of SAR and optical imagery, whereby each step is encoded by a deep neural network. We first predict regions in each image which are deemed most suitable for matching. A correspondence heatmap is then generated through a multi-scale, feature-space cross-correlation operator. Finally, outliers are removed by classifying the correspondence surface as a positive or negative match. Our experiments show that the proposed approach provides a substantial improvement over previous methods for SAR-optical image matching and can be used to register even large-scale scenes. This opens up the possibility of using both types of data jointly, for example for the improvement of the geo-localization of optical satellite imagery or multi-sensor stereogrammetry.
机译:SAR和光学图像提供了关于观察到的场景的高度互补信息。因此,在许多数据融合方案中,可以在许多数据融合方案中获得这些两种模式的结合使用。但是,任何数据融合任务都需要测量以准确对齐。虽然对于两个数据源图像通常以地理位置的方式提供,但由于角度测量误差的传播,光学图像的地理定位通常不准确。然而,对于SAR和光学图像,存在许多用于匹配同源图像区域的方法,然而,由于两种方式之间的显着几何和辐射差异,这些方法不适用于SAR光学图像匹配。在本文中,我们为SAR和光学图像呈现了一种三步框架,用于SAR和光学图像的稀疏图像匹配,由此每个步骤由深神经网络编码。我们首先预测每个图像中最适合匹配的图像的区域。然后通过多尺度,特征空间交叉相关操作员生成对应热示例。最后,通过将对应表面分类为正或负匹配来删除异常值。我们的实验表明,该方法对以前的SAR光学图像匹配的方法提供了大量改进,并且可用于注册大规模场景。这对两个类型的数据共同开辟了可能性,例如用于改进光学卫星图像的地理定位或多传感器立体图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号