首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Comparing partial least squares (PLS) discriminant analysis and sparse PLS discriminant analysis in detecting and mapping Solarium mauritianum in commercial forest plantations using image texture
【24h】

Comparing partial least squares (PLS) discriminant analysis and sparse PLS discriminant analysis in detecting and mapping Solarium mauritianum in commercial forest plantations using image texture

机译:比较部分最小二乘(PLS)判别分析和稀疏PLS判别分析在使用图像纹理检测和绘制商品林人工林日光浴中的应用

获取原文
获取原文并翻译 | 示例

摘要

Solanum mauritianum is a highly destructive and resourceful plant invader, resulting in severe economic and ecological damage. Detecting and mapping the spatial distribution of S. mauritianum is a priority for effective management of commercial forest plantations. Therefore, image texture computed from a 2 m WorldView-2 image with sparse partial least squares discriminant analysis (SPLS-DA) and partial least squares discriminant analysis (PLS-DA) were developed and applied to detect and map co-occurring S. mauritianum within a commercial forest plantation. The results indicated that SPLS-DA successfully performed simultaneous variable selection and dimension reduction to yield an overall classification accuracy of 77%. In contrast, the PLS-DA model in conjunction with variable importance in the projection (VIP) yielded an overall classification accuracy of 67%. The most significant texture parameters selected by the SPLS-DA model were correlation, homogeneity and second moment, which were predominantly computed from the red, red edge and NIR bands. Overall, this study validates the potential of image texture integrated with SPLS-DA to effectively detect and map co-occurring S. mauritianum in a commercial forest plantation.
机译:茄属茄属植物是高度破坏性和资源丰富的植物入侵者,导致严重的经济和生态破坏。检测和绘制毛里求斯栗的空间分布是有效管理商品林的优先事项。因此,开发了使用稀疏的偏最小二乘判别分析(SPLS-DA)和偏最小二乘判别分析(PLS-DA)从2 m WorldView-2图像计算得到的图像纹理,并将其应用于检测和绘制共生毛里求斯栗在商业林场内。结果表明,SPLS-DA成功执行了同时的变量选择和降维操作,从而产生了77%的总体分类精度。相反,PLS-DA模型与投影中的可变重要性(VIP)结合使用时,总体分类精度为67%。 SPLS-DA模型选择的最重要的纹理参数是相关性,均一性和第二矩,主要从红色,红色边缘和NIR波段计算得出。总的来说,这项研究验证了将图像纹理与SPLS-DA集成在一起的潜力,可以有效地检测和绘制商品林人工林中并存的毛里求斯沙门氏菌。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号