首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Object-based image analysis through nonlinear scale-space filtering
【24h】

Object-based image analysis through nonlinear scale-space filtering

机译:通过非线性尺度空间滤波进行基于对象的图像分析

获取原文
获取原文并翻译 | 示例

摘要

In this research, an object-oriented image classification framework was developed which incorporates nonlinear scale-space filtering into the multi-scale segmentation and classification procedures. Morphological levelings, which possess a number of desired spatial and spectral properties, were associated with anisotropically diffused markers towards the construction of nonlinear scale spaces. Image objects were computed at various scales and were connected to a kernel-based learning machine for the classification of various earth-observation data from both active and passive remote sensing sensors. Unlike previous object-based image analysis approaches, the scale hierarchy is implicitly derived from scale-space representation properties. The developed approach does not require the tuning of any parameter—of those which control the multi-scale segmentation and object extraction procedure, like shape, color, texture, etc. The developed object-oriented image classification framework was applied on a number of remote sensing data from different airborne and spaceborne sensors including SAR images, high and very high resolution panchromatic and multispectral aerial and satellite datasets. The very promising experimental results along with the performed qualitative and quantitative evaluation demonstrate the potential of the proposed approach. © 2010 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. 【Keywords】Automation;Analysis;Simplification;Segmentation;Classification;
机译:在这项研究中,开发了一种面向对象的图像分类框架,该框架将非线性尺度空间滤波纳入了多尺度分割和分类过程。具有许多所需空间和光谱特性的形态学水准与各向异性扩散的标记物相关联,以构建非线性尺度空间。图像对象以各种比例进行计算,并连接到基于内核的学习机上,以对来自主动和被动遥感器的各种地球观测数据进行分类。与以前的基于对象的图像分析方法不同,比例层次结构是从比例空间表示属性隐式派生的。所开发的方法不需要调整任何参数,这些参数可以控制多尺度分割和对象提取过程,例如形状,颜色,纹理等。所开发的面向对象的图像分类框架已应用于许多远程感测来自不同机载和星载传感器的数据,包括SAR图像,高分辨率和超高分辨率的全色和多光谱航空和卫星数据集。非常有希望的实验结果以及进行的定性和定量评估证明了该方法的潜力。 ©2010国际摄影测量与遥感学会(ISPRS)。由Elsevier B.V.发布。保留所有权利。 【关键词】自动化;分析;简化;分类;分类;

著录项

  • 来源
  • 作者单位

    National Technical University of Athens, Remote Sensing Laboratory, Athens, Greece;

    National Technical University of Athens, Remote Sensing Laboratory, Athens, Greece, Ecole Centrale de Paris, Laboratoire de Mathematiques Appliquees aux Systemes, Chatenay-Malabry, France;

    National Technical University of Athens, Remote Sensing Laboratory, Athens, Greece;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号