首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy
【24h】

LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy

机译:LiDAR-Landsat数据融合用于大面积评估城市土地覆盖:平衡空间分辨率,数据量和地图绘制精度

获取原文
获取原文并翻译 | 示例

摘要

The structural characteristics of Light Detection and Ranging (LiDAR) data are increasingly used to classify urban environments at fine scales, but have been underutilized for distinguishing heterogeneous land covers over large urban regions due to high cost, limited spectral information, and the computational difficulties posed by inherently large data volumes. Here we explore tradeoffs between potential gains in mapping accuracy with computational costs by integrating structural and intensity surface models extracted from LiDAR data with Landsat Thematic Mapper (TM) imagery and evaluating the degree to which TM, LiDAR, and LiDAR-TM fusion data discriminated land covers in the rapidly urbanizing region of Charlotte, North Carolina, USA. Using supervised maximum likelihood (ML) and classification tree (CT) methods, we classified TM data at 30 m and LiDAR data and LiDAR-TM fusions at 1 m, 5 m, 10 m, 15 m and 30 m resolutions. We assessed the relative contributions of LiDAR structural and intensity surface models to classification map accuracy and identified optimal spatial resolution of LiDAR surface models for large-area assessments of urban land cover. ML classification of 1 m LiDAR-TM fusions using both structural and intensity surface models increased total accuracy by 32% compared to LiDAR alone and by 8% over TM at 30 m. Fusion data using all LiDAR surface models improved class discrimination of spectrally similar forest, farmland, and managed clearings and produced the highest total accuracies at 1 m, 5 m, and 10 m resolutions (87.2%, 86.3% and 85.4%, respectively). At all resolutions of fusion data and using either ML or CT classifier, the relative contribution of the LiDAR structural surface models (canopy height and normalized digital surface model) to classification accuracy is greater than the intensity surface. Our evaluation of tradeoffs between data volume and thematic map accuracy for this study system suggests that a spatial resolution of 5 m for LiDAR surface models best balances classification performance and the computational challenges posed by large-area assessments of land cover.
机译:光探测与测距(LiDAR)数据的结构特征越来越多地用于对城市环境进行精细分类,但由于成本高,光谱信息有限以及计算困难,因此未能充分用于区分大城市区域的异质土地覆盖固有的大数据量。在这里,我们通过整合从LiDAR数据中提取的结构和强度表面模型与Landsat Thematic Mapper(TM)影像并评估TM,LiDAR和LiDAR-TM融合数据对土地的区分程度,来探索制图精度与计算成本之间潜在的取舍。涵盖了美国北卡罗来纳州夏洛特市迅速城市化的地区。使用监督最大似然(ML)和分类树(CT)方法,我们对30 m处的TM数据以及1 m,5 m,10 m,15 m和30 m分辨率的LiDAR数据和LiDAR-TM融合进行了分类。我们评估了LiDAR结构和强度表面模型对分类图精度的相对贡献,并确定了LiDAR表面模型的最佳空间分辨率,可用于城市土地覆盖的大面积评估。使用结构和强度表面模型对1 m LiDAR-TM融合器进行ML分类,与单独使用LiDAR相比,在30 m处的总精度提高了32%,而TM则提高了8%。使用所有LiDAR地面模型的融合数据改善了光谱相似的森林,农田和经管理的砍伐的类别区分,并在1 m,5 m和10 m的分辨率下产生了最高的总精度(分别为87.2%,86.3%和85.4%)。在融合数据的所有分辨率下以及使用ML或CT分类器,LiDAR结构表面模型(机盖高度和归一化数字表面模型)对分类精度的相对贡献大于强度表面。我们对本研究系统的数据量与专题图精度之间的折衷评估表明,LiDAR表面模型的5 m空间分辨率最佳地平衡了分类性能和大面积土地覆盖评估所带来的计算挑战。

著录项

  • 来源
  • 作者单位

    Center for Applied Geographic Information Science, Department of Geography and Earth Sciences, University of North Carolina, 9201 University City Blvd., Charlotte, NC 28223, USA;

    Center for Applied Geographic Information Science, Department of Geography and Earth Sciences, University of North Carolina, 9201 University City Blvd., Charlotte, NC 28223, USA;

    Center for Applied Geographic Information Science, Department of Geography and Earth Sciences, University of North Carolina, 9201 University City Blvd., Charlotte, NC 28223, USA;

    Center for Applied Geographic Information Science, Department of Geography and Earth Sciences, University of North Carolina, 9201 University City Blvd., Charlotte, NC 28223, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LiDAR; landsat; fusion; land cover; large-area assessment; mapping accuracy; managed clearings;

    机译:激光雷达陆地卫星融合土地覆盖;大面积评估;制图精度托管清算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号