首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Feature-based registration of historical aerial images by Area Minimization
【24h】

Feature-based registration of historical aerial images by Area Minimization

机译:通过区域最小化基于特征的历史航拍图像配准

获取原文
获取原文并翻译 | 示例

摘要

The registration of historical images plays a significant role in assessing changes in land topography over time. By comparing historical aerial images with recent data, geometric changes that have taken place over the years can be quantified. However, the lack of ground control information and precise camera parameters has limited scientists' ability to reliably incorporate historical images into change detection studies. Other limitations include the methods of determining identical points between recent and historical images, which has proven to be a cumbersome task due to continuous land cover changes. Our research demonstrates a method of registering historical images using Time Invariant Line (TIL) features. TIL features are different representations of the same line features in multi-temporal data without explicit point-to-point or straight line-to-straight line correspondence. We successfully determined the exterior orientation of historical images by minimizing the area formed between corresponding TIL features in recent and historical images. We then tested the feasibility of the approach with synthetic and real data and analyzed the results. Based on our analysis, this method shows promise for long-term 3D change detection studies. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
机译:历史图像的配准在评估土地地形随时间的变化中起着重要作用。通过将历史航空图像与最新数据进行比较,可以量化多年来发生的几何变化。但是,缺乏地面控制信息和精确的相机参数限制了科学家将历史图像可靠地纳入变化检测研究的能力。其他局限性包括确定最近图像和历史图像之间相同点的方法,由于不断的土地覆盖变化,事实证明这是一项繁琐的任务。我们的研究演示了使用时不变线(TIL)功能注册历史图像的方法。 TIL要素是多时间数据中同一线要素的不同表示形式,没有明确的点对点或直线对直线的对应关系。我们通过最小化最新图像和历史图像中相应的TIL特征之间形成的区域来成功确定历史图像的外部方向。然后,我们使用综合和真实数据测试了该方法的可行性,并分析了结果。根据我们的分析,这种方法显示了长期3D变化检测研究的希望。 (C)2016国际摄影测量与遥感学会(ISPRS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号