首页> 外文期刊>Iran Journal of Computer Science >Hybrid location-centric e-Commerce recommendation model using dynamic behavioral traits of customer
【24h】

Hybrid location-centric e-Commerce recommendation model using dynamic behavioral traits of customer

机译:混合地位为中心的电子商务推荐模型,使用客户动态行为特征

获取原文
获取原文并翻译 | 示例

摘要

Major e-Commerce service provider offers additional product recommendation to its customers, while they access the application, and enough evidence existing that such recommendations are cost effective for both consumer and service provider. For maximizing profit and to satisfy the user, existing e-Commerce platforms use long-term context for recommendations. In actual scenario, the recommendation can aid the user for other reason such as when the product is reminded of recent interest in or, point customer to currently discounted items. Furthermore, user preference changes over time due to weather, location, etc. As a result, the recommendation must be made based on the present behavior of the ongoing session. Many research based on location and session-based approaches has been presented to forecast user's next-item requirement. However, these models are not efficient, as they are designed either to model short-term or long-term preferences. Recently, some hybrid recommendation algorithms have been presented to model both short-term and long term, but these models are designed considering static behavior and finds difficulty in revealing the correlations among behaviors and items. Furthermore, these models do not consider location-centric information for performing recommendation. To overcome the above-mentioned challenges, our research work presents hybrid location-centric prediction (HLCP) model by considering the dynamic behavior traits of users. HLCP model can learn both short-term and long-term context efficiently. Experiment results show that HLCP attains significant performance over existing models in terms of mean reciprocal rate (MMR) and hit rate (HR).
机译:主要电子商务服务提供商为其客户提供额外的产品推荐,同时访问该应用程序,并且足够的证据存在此类建议对消费者和服务提供商的成本效益。为了最大限度地利用利润和满足用户,现有的电子商务平台使用长期上下文进行建议。在实际情况下,建议可以帮助用户出于其他原因,例如当产品被提醒近期兴趣或指向客户到当前打折项目时。此外,由于天气,位置等,用户偏好随时间变化。结果,必须基于正在进行的会话的当前行为来进行推荐。已经提出了基于位置和基于会议的方法的许多研究来预测用户的下一个项目要求。但是,这些模型是不高效的,因为它们设计为模拟短期或长期偏好。最近,一些混合推荐算法已经介绍了短期和长期模型,但这些模型旨在考虑静态行为,发现难以揭示行为和物品之间的相关性。此外,这些模型不考虑以用于执行推荐的地点信息。为了克服上述挑战,我们的研究工作通过考虑用户的动态行为特征来提出混合位置中心预测(HLCP)模型。 HLCP模型可以有效地学习短期和长期上下文。实验结果表明,在平均互惠率(MMR)和命中率(HR)方面,HLCP对现有模型的显着性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号