首页> 外文期刊>Inverse Problems in Science and Engineering >A review on restoration of seismic wavefields based on regularization and compressive sensing
【24h】

A review on restoration of seismic wavefields based on regularization and compressive sensing

机译:基于正则化和压缩感知的地震波场恢复研究进展

获取原文
获取原文并翻译 | 示例

摘要

Restoration of seismic data as an ill-posed inverse problem means to recover the complete wavefields from sub-sampled data. Since seismic data are typically sparse in the curvelet domain, this problem can be solved based on the compressive sensing theory. Meanwhile three major problems are modelling, sampling and solving methods. We first construct l 0 and l 1 minimization models and then develop fast projected gradient methods to solve the restoration problem. For seismic data interpolation/restoration, the regular sub-sampled data will generate coherence aliasing in the frequency domain, while the random sub-sampling cannot control the largest sampling gap. Therefore, we consider a new sampling technique in this article which is based on the controlled piecewise random sub-sampling scheme. Numerical simulations are made and compared with the iterative soft thresholding method and the spectral gradient-projection method. It reveals that the proposed algorithms have the advantages of high precision, robustness and fast calculation.
机译:将地震数据恢复为不适定的反问题意味着从子采样数据中恢复完整的波场。由于地震数据通常在Curvelet域中稀疏,因此可以基于压缩感测理论解决此问题。同时,三个主要问题是建模,采样和求解方法。我们首先构造l 0 和l 1 最小化模型,然后开发快速投影梯度法来解决恢复问题。对于地震数据插值/恢复,常规子采样数据将在频域中生成相干混叠,而随机子采样无法控制最大采样间隙。因此,我们在本文中考虑一种新的采样技术,该技术基于受控的分段随机子采样方案。进行了数值模拟,并与迭代软阈值方法和光谱梯度投影方法进行了比较。结果表明,该算法具有精度高,鲁棒性强,计算速度快的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号