【24h】

ELASTIC-NET REGULARIZATION FOR LOW-RANK MATRIX RECOVERY

机译:低秩矩阵恢复的弹性网规整

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of recovering a low-rank matrix from a small number of measurements consisting of linear combinations of the matrix entries. We extend the elastic-net regularization in compressive sensing to a more general setting, the matrix recovery setting, and consider the elastic-net regularization scheme for matrix recovery. To investigate on the statistical properties of this scheme and in particular on its convergence properties, we set up a suitable mathematic framework. We characterize some properties of the estimator and construct a natural iterative procedure to compute it. The convergence analysis shows that the sequence of iterates converges, which then underlies successful applications of the matrix elastic-net regularization algorithm. In addition, the error bounds of the proposed algorithm for low-rank matrix and even for full-rank matrix are presented in this paper.
机译:本文考虑了从由矩阵项的线性组合组成的少量测量中恢复低秩矩阵的问题。我们将压缩感测中的弹性网正则化扩展到更通用的设置,即矩阵恢复设置,并考虑用于矩阵恢复的弹性网正则化方案。为了研究该方案的统计特性,尤其是其收敛性,我们建立了合适的数学框架。我们表征估计器的某些属性,并构造一个自然的迭代过程来对其进行计算。收敛性分析表明,迭代序列收敛,这成为矩阵弹性网正则化算法成功应用的基础。此外,本文还针对低秩矩阵甚至全秩矩阵提出了该算法的误差范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号