首页> 外文期刊>Applied Mathematical Modelling >Low-rank elastic-net regularized multivariate Huber regression model
【24h】

Low-rank elastic-net regularized multivariate Huber regression model

机译:低级弹性净正规化多元符合Huber回归模型

获取原文
获取原文并翻译 | 示例

摘要

Heavy-tailed noise or strongly correlated predictors often go with the multivariate linear regression model. To tackle with these problems, this paper focuses on the matrix elastic net regularized multivariate Huber regression model. This new model possesses the grouping effect property and the robustness to heavy-tailed noise. Meanwhile, it also has the ability of reducing the negative effect of outliers due to Huber loss. Furthermore, an accelerated proximal gradient algorithm is designed to solve the proposed model. Some numerical studies including a real data analysis are dedicated to show the efficiency of our method.
机译:重尾噪音或强相关的预测器经常使用多变量线性回归模型。为了解决这些问题,本文重点介绍了矩阵弹性净正规化多变量Huber回归模型。这种新模型具有分组效果属性以及重型噪音的鲁棒性。同时,它还具有降低由于HUBER损失导致异常值的负面影响的能力。此外,设计了一种加速的近端梯度算法来解决所提出的模型。一些数值研究,包括实际数据分析专用以展示我们方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号