首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Generalized Unitarily Invariant Gauge Regularization for Fast Low-Rank Matrix Recovery
【24h】

Generalized Unitarily Invariant Gauge Regularization for Fast Low-Rank Matrix Recovery

机译:全面不变的规范正常化,用于快速低级矩阵恢复

获取原文
获取原文并翻译 | 示例

摘要

Spectral regularization is a widely used approach for low-rank matrix recovery (LRMR) by regularizing matrix singular values. Most of the existing LRMR solvers iteratively compute the singular values via applying singular value decomposition (SVD) on a dense matrix, which is computationally expensive and severely limits their applications to large-scale problems. To address this issue, we present a generalized unitarily invariant gauge (GUIG) function for LRMR. The proposed GUIG function does not act on the singular values; however, we show that it generalizes the well-known spectral functions, including the rank function, the Schatten-rho quasi-norm, and logsum of singular values. The proposed GUIG regularization model can be formulated as a bilinear variational problem, which can be efficiently solved without computing SVD. Such a property makes it well suited for large-scale LRMR problems. We apply the proposed GUIG model to matrix completion and robust principal component analysis and prove the convergence of the algorithms. Experimental results demonstrate that the proposed GUIG method is not only more accurate but also much faster than the state-of-the-art algorithms, especially on large-scale problems.
机译:光谱正则化是通过正规化矩阵奇异值的低秩矩阵恢复(LRMR)的广泛使用方法。大多数现有的LRMR求解器通过在致密矩阵上应用奇异值分解(SVD)来迭代地计算奇异值,这是计算昂贵的并且严重限制其应用于大规模问题。要解决此问题,我们为LRMR呈现了一个概括的一般不变的仪表(GUIG)函数。建议的GUIG函数并未对奇异值作用;然而,我们表明它概括了众所周知的光谱函数,包括等级函数,Schatten-Rho准规范和奇异值的Logsum。所提出的GUIG正则化模型可以配制成双线性变分问题,这可以在不计算SVD的情况下有效地解决。这样的财产使其适用于大规模的LRMR问题。我们将提议的GUIG模型应用于矩阵完成和强大的主成分分析,并证明了算法的收敛性。实验结果表明,所提出的GUIG方法不仅比最先进的算法更准确,而且比最先进的算法更快,尤其是在大规模问题上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号