首页> 外文期刊>International Journal of Social Robotics >Learning the Selection of Actions for an Autonomous Social Robot by Reinforcement Learning Based on Motivations
【24h】

Learning the Selection of Actions for an Autonomous Social Robot by Reinforcement Learning Based on Motivations

机译:基于动机的强化学习学习自主社交机器人的动作选择

获取原文
获取原文并翻译 | 示例

摘要

Autonomy is a prime issue on robotics field and it is closely related to decision making. Last researches on decision making for social robots are focused on biologically inspired mechanisms for taking decisions. Following this approach, we propose a motivational system for decision making, using internal (drives) and external stimuli for learning to choose the right action. Actions are selected from a finite set of skills in order to keep robot’s needs within an acceptable range. The robot uses reinforcement learning in order to calculate the suitability of every action in each state. The state of the robot is determined by the dominant motivation and its relation to the objects presents in its environment.
机译:自治是机器人技术领域的首要问题,它与决策密切相关。最近关于社交机器人决策的研究集中于受生物学启发的决策机制。遵循这种方法,我们提出了一个用于决策的激励系统,利用内部(驱动器)和外部刺激来学习选择正确的动作。从有限的一组技能中选择动作,以将机器人的需求保持在可接受的范围内。机器人使用强化学习来计算每种状态下每个动作的适用性。机器人的状态取决于主导动机及其与环境中物体的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号