首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Multi-stream Network for Human-object Interaction Detection
【24h】

Multi-stream Network for Human-object Interaction Detection

机译:用于人对象交互检测的多流网络

获取原文
获取原文并翻译 | 示例

摘要

Detecting the interaction between humans and objects in images is a critical problem for obtaining a deeper understanding of the visual relationship in a scene and also a critical technology in many practical applications, such as augmented reality, video surveillance and information retrieval. Be that as it may, due to the fine-grained actions and objects in the real scene and the coexistence of multiple interactions in one scene, the problem is far from being solved. This paper differs from prior approaches, which focused only on the features of instances, by proposing a method that utilizes a four-stream CNNs network for human-object interaction (HOI) detection. More detailed visual features, spatial features and pose features from human-object pairs are extracted to solve the challenging task of detection in images. Specially, the core idea is that the region where people interact with objects contains important identifying cues for specific action classes, and the detailed cues can be fused to facilitate HOI recognition. Experiments on two large-scale HOI public benchmarks, V-COCO and HICO-DET, are carried out and the results show the effectiveness of the proposed method.
机译:检测人类和图像中的对象之间的相互作用是在许多实际应用中获得对场景中的视觉关系的更深入了解的关键问题,例如增强现实,视频监控和信息检索。尽管如此,由于实际场景中的细粒度和对象以及一个场景中的多个交互的共存,问题远未解决。本文通过提出利用用于人对象交互(HOI)检测的四流CNNS网络的方法,仅针对实例的特征的方法。从人对象对的更详细的视觉功能,空间特征和姿势特征,以解决图像中检测的具体任务。特别是,核心思想是,人们与对象交互的地区包含重要识别提示的特定行动类,并且可以融合详细的提示,以促进Hoi认可。进行了两种大规模的Hoi公共基准,V-Coco和Hico-DET的实验,结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号