首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Deep Learning Networks-Based Action Videos Classification and Search
【24h】

Deep Learning Networks-Based Action Videos Classification and Search

机译:基于深度学习网络的动作视频分类和搜索

获取原文
获取原文并翻译 | 示例

摘要

This work presents the deep learning networks-based method using fine-tuning for classification and search of a diversity of action videos. First, a 3D convolutional neural networks (3D CNN) model which performs pre-training operation and fine-tuning strategy is employed to extract the spatiotemporal features of videos. It is first pre-trained on UCF-101 datasets to train model with initial parameters. Then, a small new dataset is employed to fine-tune the initial model for the training of the new model. Once features are extracted by the final CNNs model, distance measure can be adopted to calculate the similarities between the query video and the test dataset for the video search. The searched video is returned and ranked according to the priority when it has higher similarity with the query video. The comparison results in the experiment shows that the search method using fine-tuning obtains better performance than the method without using fine-tuning. Second, the classification results based on the 3D CNN model using fine-tuning are also presented for the consideration of a query by keyword. Accuracy result obtained using the model with the help of fine-tuning is approximately 2.8% higher than that without using fine-tuning.
机译:这项工作介绍了使用微调的基于深度学习网络的方法,以进行分类和搜索动作视频的分集。首先,采用执行预训练操作和微调策略的3D卷积神经网络(3D CNN)模型来提取视频的时空特征。首先在UCF-101数据集上预先训练,以训练模型,初始参数。然后,采用一个小型数据集来微调新模型的训练的初始模型。一旦通过最终CNNS模型提取特征,可以采用距离测量来计算查询视频与视频搜索的测试数据集之间的相似性。当与查询视频具有更高的相似性时,搜索视频返回并根据优先级排序。实验中的比较结果表明,使用微调的搜索方法比使用微调的方法获得更好的性能。其次,还呈现了基于使用微调的3D CNN模型的分类结果,用于考虑通过关键字的查询。使用该模型在微调的帮助下获得的准确性结果比不使用微调的高度高约2.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号