首页> 外文期刊>Neurocomputing >Pedestrian search in surveillance videos by learning discriminative deep features
【24h】

Pedestrian search in surveillance videos by learning discriminative deep features

机译:通过学习区分性深层特征在监视视频中进行行人搜索

获取原文
获取原文并翻译 | 示例

摘要

Searching for a target person in videos captured by many non-overlapped cameras is an important yet challenging problem in the fields of intelligent video surveillance. Person re-identification is a key technique in the person searching task. In this paper, we propose a discriminative objective function to learn deep CNN features for person re-id. Specially, the proposed objective function reduces distances between instances belonging to the same person, and enlarges distances between instances belonging to different persons at the same time. With the goal of inter-class dispersion and intra-class compactness, the obtained deep features can be more discriminative than many traditional training objectives, e.g. softmax, contrastive and triplet objective functions. Extensive experiments on person re-id benchmarks validated the superiority of the proposed objective function. Based on the proposed person re-identification algorithm, we implement a pedestrian search system by integrating three components: pedestrian detection, multi-person tracking and person re-identification together. The whole system is evaluated on a Cross-Camera Pedestrian Search Challenge and achieves superior performances on the evaluation set. (c) 2017 Elsevier B.V. All rights reserved.
机译:在由许多不重叠的摄像机捕获的视频中搜索目标人物是智能视频监控领域中一个重要但具有挑战性的问题。人员重新识别是人员搜索任务中的一项关键技术。在本文中,我们提出了一种判别目标函数,以学习用于人员身份的深层CNN功能。特别地,提出的目标函数减小了属于同一人的实例之间的距离,并且同时增大了属于不同人的实例之间的距离。以类间分散和类内紧凑为目标,所获得的深层特征可能比许多传统的训练目标(例如, softmax,对比和三重目标函数。关于人员身份基准的大量实验验证了所提出的目标函数的优越性。在提出的人员重新识别算法的基础上,我们将行人检测,多人跟踪和人员重新识别这三个组件集成在一起,从而实现了行人搜索系统。整个系统在跨相机行人搜索挑战赛中进行了评估,并在评估集上获得了出色的表现。 (c)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第29期|120-128|共9页
  • 作者单位

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Shaanxi Key Lab Speech & Image Informat Proc SAII, Xian 710072, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Shaanxi Key Lab Speech & Image Informat Proc SAII, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Shaanxi Key Lab Speech & Image Informat Proc SAII, Xian 710072, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Person search; Re-identification; Discriminative; CNN; Deep feature;

    机译:人员搜索;重新识别;判别;CNN;深度特征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号