首页> 外文会议>International Conference on Systems, Man, and Cybernetics >Video action classification using symmelets and deep learning
【24h】

Video action classification using symmelets and deep learning

机译:使用Symmelet和深度学习进行视频动作分类

获取原文

摘要

Classification of human actions is very challenging and important in many video-based applications. Two common features, i.e., the hand-crafted and the deep-learned ones are usually adopted for video representation and have been proven to be effective in many famous datasets in the literature. However, the hand-crafted feature lacks the ability to detect the discriminative and semantic features and the deep-learned one fails to outperform previous hand-crafted feature. This paper propose a novel symmelet-based classification approach to improve the accuracy of the state-of-the-art frameworks. 'Symmelet' is a symmetrical pair including a SURF point and its corresponding symmetrical point in the same frame. Many symmetrical properties often exist in various video scenes. With symmelets, various redundant (or background) features can be filtered out so that action contents can be more accurately represented. The new approach takes advantages of symmelets, improved dense trajectories (IDT), and trajectory-pooled deep-convolutional descriptor (TDD) to learn useful deep features for represent video contents deeply. Performance evaluation on two challenging datasets, i.e., HMDB51 and UCF101 shows that the proposed solution is superior and can achieve quite higher recognition accuracy than other state-of-art frameworks.
机译:在许多基于视频的应用程序中,人类动作的分类非常具有挑战性,并且很重要。视频表示通常采用手工和深度学习这两个共同的特征,并且已被证明在文献中的许多著名数据集中都是有效的。但是,手工制作的功能缺乏检测判别和语义功能的能力,而学识渊博的人无法胜过以前的手工制作的功能。本文提出了一种新的基于symmelet的分类方法,以提高最新框架的准确性。 “ Symmelet”是在同一帧中包括SURF点及其对应的对称点的对称对。许多视频场景中经常存在许多对称属性。使用symmelet,可以过滤掉各种冗余(或背景)特征,以便可以更准确地表示动作内容。这种新方法利用了Symmelets,改进的密集轨迹(IDT)和轨迹合并的深度卷积描述符(TDD)的优势,以学习有用的深度特征,以深刻地表现视频内容。对两个具有挑战性的数据集(即HMDB51和UCF101)的性能评估表明,与其他现有技术框架相比,该解决方案具有更高的识别率,并且可以实现更高的识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号