首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A New Optimal Ensemble Algorithm Based on SVDD Sampling for Imbalanced Data Classification
【24h】

A New Optimal Ensemble Algorithm Based on SVDD Sampling for Imbalanced Data Classification

机译:一种基于SVDD采样的新型最优集合算法,用于实施数据分类

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, imbalanced data classification is a hot topic in data mining and recently, several valuable researches have been conducted to overcome certain difficulties in the field. Moreover, those approaches, which are based on ensemble classifiers, have achieved reasonable results. Despite the success of these works, there are still many unsolved issues such as disregarding the importance of samples in balancing, determination of proper number of classifiers and optimizing weights of base classifiers in voting stage of ensemble methods. This paper intends to find an admissible solution for these challenges. The solution suggested in this paper applies the support vector data descriptor (SVDD) for sampling both minority and majority classes. After determining the optimal number of base classifiers, the selected samples are utilized to adjust base classifiers. Finally, genetic algorithm optimization is used in order to find the optimum weights of each base classifier in the voting stage. The proposed method is compared with some existing algorithms. The results of experiments confirm its effectiveness.
机译:如今,数据分类的不平衡是数据挖掘的热门话题,最近,已经进行了几项有价值的研究以克服该领域的某些困难。此外,基于集合分类器的这些方法取得了合理的结果。尽管这些作品的成功,但仍有许多未解决的问题,例如忽视样本在平衡中的重要性,确定合适数量的分类器和优化集合方法的基础分类器的优化权重。本文打算为这些挑战找到一个可接受的解决方案。本文建议的解决方案适用于对少数群体和多数类进行采样的支持向量数据描述符(SVDD)。在确定最佳基本分类器的最佳数量之后,所选择的样本用于调整基础分类器。最后,使用遗传算法优化,以便在投票阶段找到每个基本分类器的最佳权重。将该方法与一些现有算法进行比较。实验结果证实了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号