首页> 外文期刊>Knowledge-Based Systems >The ensemble of density-sensitive SVDD classifier based on maximum soft margin for imbalanced datasets
【24h】

The ensemble of density-sensitive SVDD classifier based on maximum soft margin for imbalanced datasets

机译:基于最大软边距的密度敏感SVDD分类器的集合

获取原文
获取原文并翻译 | 示例

摘要

Imbalanced problems have recently attracted much attention due to their prevalence in numerous domains of great importance to the data mining community. However, conventional bi-class classification approaches, e.g., Support vector machine (SVM), generally perform poorly on imbalanced datasets as they are originally designed to generalize from the training data, and pay little attention to the minority class. In the paper, we extend traditional support vector domain description (SVDD) and propose a novel density-sensitive SVDD classifier based on maximum soft margin (DSMSM-SVDD) for imbalanced datasets. In the proposed approach, the relative density-based penalty weights are incorporated into the optimization objective function to represent the importance of the data samples. Through optimizing the objective function with the relative density-based penalty weights, the training majority samples with high relative densities are more likely to lie inside the hypersphere, thus eliminating noise effects on traditional SVDD. In addition, to make full use of the minority class samples to refine the boundary in training, the maximum soft margin regularization term is also introduced in the proposed technique inspired by the idea of maximizing soft margin of traditional SVM. This method allows the optimal domain description boundary to more skew toward the minority class than traditional SVDD and thus improves the classification accuracy. Eventually, AdaBoost ensemble version of DSMSM-SVDD is developed so as to further improve the generalization performance and stability in dealing with imbalanced datasets. The extensive experimental results on various datasets demonstrate that the proposed approach significantly outperforms other existing algorithms when dealing with the imbalanced classification problems in terms of G-Mean, F-Measure and AUC performance measures. (C) 2021 Elsevier B.V. All rights reserved.
机译:由于他们对数据挖掘社区非常重视的众多领域的普遍性,最近的问题最近引起了很多关注。然而,传统的双级分类方法,例如,支持向量机(SVM),通常在不平衡数据集上执行不良,因为它们最初被设计为从训练数据概括,并且对少数阶级几乎没有关注。在本文中,我们扩展了传统的支持向量域描述(SVDD),并根据基于最大软距(DSMSM-SVDD)的最大软距(DSMSM-SVDD)提出新的密度敏感SVDD分类器。在所提出的方法中,基于相对密度的惩罚权重结合到优化目标函数中以表示数据样本的重要性。通过优化基于相对密度的惩罚权重的目标函数,具有高相对密度的培训多数样本更可能位于间隔内,从而消除了传统SVDD的噪音影响。此外,为了充分利用少数群体样本来改进培训的边界,还以最大化传统SVM的柔和裕度的想法启发的拟议技术的最大柔软保证金正则化术语。该方法允许最佳域描述边界比传统的SVDD更偏向朝向少数级别,从而提高分类精度。最终,开发了DSMSM-SVDD的Adaboost集合版本,以便进一步提高处理不平衡数据集的泛化性能和稳定性。各种数据集的广泛实验结果表明,当在G均值,F测量和AUC性能措施方面,所提出的方法在处理不平衡的分类问题时显着优于其他现有算法。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号