首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Video Human Behavior Recognition Based on ISA Deep Network Model
【24h】

Video Human Behavior Recognition Based on ISA Deep Network Model

机译:基于ISA深网络模型的视频人体行为识别

获取原文
获取原文并翻译 | 示例

摘要

Vision-based behavior recognition is the analysis and recognition of human behavior in video. It has been widely used in many aspects such as multimedia information retrieval, behavior monitoring, and robot perception. This paper uses the Independent Subspace Analysis (ISA) deep network model feature extraction method, which is based on the ISA model and neural network theory, and combines data preprocessing methods, K-means clustering methods, and Support Vector Machine (SVM) classifiers to achieve video classification and identification of human behavior. The ISA-based deep network model feature extraction method is an unsupervised learning method that can obtain behavior characteristics with good invariance and characterization capabilities in video human behavior. The experiment was conducted on the basis of the Hollywood2 human behavior data set. This experiment was compared with other commonly used human behavior feature extraction and recognition methods. The experimental results validated the effectiveness and advantages of this method in the classification and recognition of human behavior.
机译:基于视觉的行为识别是对视频中人类行为的分析和识别。它已广泛用于多媒体信息检索,行为监测和机器人感知等许多方面。本文采用独立的子空间分析(ISA)深网络模型特征提取方法,基于ISA模型和神经网络理论,并结合了数据预处理方法,K均值聚类方法,以及支持向量机(SVM)分类器实现人身行为的视频分类和识别。基于ISA的深网络模型特征提取方法是一种无人监督的学习方法,可以获得视频人类行为中具有良好不变性和表征能力的行为特征。基于好莱坞人行为数据集进行实验。将该实验与其他常用的人类行为特征提取和识别方法进行比较。实验结果验证了这种方法在分类和识别人类行为中的有效性和优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号