首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Fault Diagnosis Method for Wind Turbine Gearbox Based on Image Characteristics Extraction and Actual Value Negative Selection Algorithm
【24h】

Fault Diagnosis Method for Wind Turbine Gearbox Based on Image Characteristics Extraction and Actual Value Negative Selection Algorithm

机译:基于图像特性提取的风力涡轮机齿轮箱故障诊断方法及实际值负选择算法

获取原文
获取原文并翻译 | 示例

摘要

With the development of information theory and image analysis theory, the studies on fault diagnosis methods based on image processing have become a hot spot in the recent years in the field of fault diagnosis. The gearbox of wind turbine generator is a fault-prone subassembly. Its time frequency of vibration signals contains abundant status information, so this paper proposes a fault diagnosis method based on time-frequency image characteristic extraction and artificial immune algorithm. Firstly, obtain the time-frequency image using wavelet transform based on threshold denoising. Secondly, acquire time-frequency image characteristics by means of Hu invariant moment and correlation fusion gray-level co-occurrence matrix of characteristic value, thus, to extract the fault information of the gearing of wind turbine generator. Lastly, diagnose the fault type using the improved actual-value negative selection algorithm. The application of this method in the gear fault diagnosis on the test bed of wind turbine step-up gearbox proves that it is effective in the improvement of diagnosis accuracy.
机译:随着信息理论和图像分析理论的发展,基于图像处理的故障诊断方法研究已成为故障诊断领域近年来的热点。风力涡轮机发生器的齿轮箱是一种容易易于的子组件。其振动信号的时间频率包含丰富的状态信息,因此本文提出了一种基于时频图像特征提取和人工免疫算法的故障诊断方法。首先,基于阈值去噪使用小波变换获得时频图像。其次,通过HU不变时刻和相关融合灰度级共出的特征值获取时频图像特征,从而提取风力涡轮发电机的齿轮的故障信息。最后,使用改进的实际值负选择算法诊断故障类型。这种方法在风力涡轮机升降齿轮箱试验床上的齿轮故障诊断中的应用证明,在提高诊断精度方面是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号