首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >DevNet: An Efficient CNN Architecture for Handwritten Devanagari Character Recognition
【24h】

DevNet: An Efficient CNN Architecture for Handwritten Devanagari Character Recognition

机译:DevNet:用于手写的Devanagari字符识别的高效CNN架构

获取原文
获取原文并翻译 | 示例

摘要

The writing style is a unique characteristic of a human being as it varies from one person to another. Due to such diversity in writing style, handwritten character recognition (HCR) under the purview of pattern recognition is not trivial. Conventional methods used handcrafted features that required a-priori domain knowledge, which is always not feasible. In such a case, extracting features automatically could potentially attract more interests. For this, in the literature, convolutional neural network (CNN) has been a popular approach to extract features from the image data. However, state-of-the-art works do not provide a generic CNN model for character recognition, Devanagari script, for instance. Therefore, in this work, we first study several different CNN models on publicly available handwritten Devanagari characters and numerals datasets. This means that our study is primarily focusing on comparative study by taking trainable parameters, training time and memory consumption into account. Later, we propose and design DevNet, a modified CNN architecture that produced promising results, since computational complexity and memory space are our primary concerns in design.
机译:写作风格是人类的独特特征,因为它从一个人变化到另一个人。由于书写风格的多样性,图案识别的PURVIEW下的手写字符识别(HCR)并不琐碎。常规方法使用了所需的手工特征,该功能需要先验域知识,这始终是不可行的。在这种情况下,自动提取功能可能会吸引更多的兴趣。为此,在文献中,卷积神经网络(CNN)已经是从图像数据中提取特征的流行方法。然而,最先进的作品不提供用于字符识别,例如Devanagari脚本的通用CNN模型。因此,在这项工作中,我们首先在公开可用的手写的手写vanagari字符和数字数据集上研究几种不同的CNN模型。这意味着我们的研究主要通过采取培训参数,考虑培训参数,培训时间和内存消耗来专注于比较研究。后来,我们提出和设计DevNet,改进的CNN架构,产生了有希望的结果,因为计算复杂性和记忆空间是我们设计的主要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号