首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Convolutional Sparse Representation and Local Density Peak Clustering for Medical Image Fusion
【24h】

Convolutional Sparse Representation and Local Density Peak Clustering for Medical Image Fusion

机译:用于医学图像融合的卷积稀疏表示和局部密度峰聚类

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the problem of insufficient detail retention in multimodal medical image fusion (MMIF) based on sparse representation (SR), an MMIF method based on density peak clustering and convolution sparse representation (CSR-DPC) is proposed. First, the base layer is obtained based on the registered input image by the averaging filter, and the original image minus the base layer to obtain the detail layer. Second, for retaining the details of the fused image, the detail layer image is fused by CSR to obtain the fused detail layer image, then the base layer image is segmented into several image blocks, and the blocks are clustered by using DPC to obtain some clusters, and each class cluster is trained to obtain a sub-dictionary, and all the sub-dictionaries are fused to obtain an adaptive dictionary. The sparse coefficient is fused through the learned adaptive dictionary, and the fused base layer image is obtained through reconstruction. Finally, fusing the detail layer and the base layer and reconstructing them forms the ultimate fused image. Experiments show that compared to the state-of-the-art two multiscale transformation methods and five SR methods, the proposed method(CSR-DPC) outperforms the other methods in terms of the image details, the visual quality and the objective evaluation index, which can be helpful for clinical diagnosis and adjuvant treatment.
机译:针对基于稀疏表示(SR)的多模式医学图像融合(MMIF)的细节保留不足的问题,提出了一种基于密度峰聚类和卷积稀疏表示(CSR-DPC)的MMIF方法。首先,基于平均滤波器基于登记的输入图像获得基础层,并且原始图像减去基层以获得细节层。其次,为了保留熔融图像的细节,细节层图像被CSR融合以获得融合细节层图像,然后将基本层图像分段为几个图像块,并且通过使用DPC来聚集块以获得一些图像块。群集和每个类群集训练以获得子字典,并且所有子词典都被融合以获得自适应词典。稀疏系数通过学习的自适应词典融合,并且通过重建获得熔融基层图像。最后,融合细节层和基础层并重建它们形成最终的融合图像。实验表明,与最先进的两种多尺度转换方法和五个SR方法相比,所提出的方法(CSR-DPC)在图像细节,视觉质量和客观评估指标方面优于其他方法,这有助于临床诊断和佐剂治疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号