首页> 外文期刊>Concurrency, practice and experience >Medical image fusion method by using Laplacian pyramid and convolutional sparse representation
【24h】

Medical image fusion method by using Laplacian pyramid and convolutional sparse representation

机译:使用拉普拉斯金字塔和卷积稀疏表示的医学图像融合方法

获取原文
获取原文并翻译 | 示例

摘要

Medical image fusion is a technology of combining multi-modal images to generate a composite image, which is favorable to improve the capability of doctors in diagnosis and treatment of the disease. In order to achieve good performance, a fusion method by combining Laplacian pyramid (LP) and convolutional sparse representation (CSR) is proposed. In the proposed fusion method, LP transform is performed on each pair of pre-registered computed tomography image and magnetic resonance image to obtain their detail layers and base layer. Then, the base layer is fused with a CSR-based approach, whereas the detail layers are merged using the popular "max-absolute" rule. Finally, the fused image is reconstructed by performing the inverse LP transform over the fused base layer and detail layers. The advantages of our method are that the texture detail information contained in source images can be fully extracted and the overall contrast of the final fused image will not be decreased. Experimental results demonstrate the superiority of the proposed method.
机译:医学图像融合是组合多模态图像以产生复合图像的技术,这有利可提高医生在诊断和治疗疾病中的能力。为了实现良好的性能,提出了通过组合Laplacian金字塔(LP)和卷积稀疏表示(CSR)来实现融合方法。在所提出的融合方法中,对每对预先登记的计算断层摄影图像和磁共振图像进行LP变换,以获得它们的细节层和基层。然后,基层与基于CSR的方法融合,而详细层使用流行的“MAX-绝对”规则合并。最后,通过在熔融基础层和细节层上执行逆LP变换来重建融合图像。我们的方法的优点是可以充分提取源图像中包含的纹理细节信息,并且不会降低最终融合图像的整体对比度。实验结果表明了所提出的方法的优越性。

著录项

  • 来源
    《Concurrency, practice and experience》 |2020年第17期|e5632.1-e5632.13|共13页
  • 作者单位

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China;

    Univ Milan Dipartimento Informat Via Celoria 18 I-20133 Milan MI Italy;

    Xidian Univ Sch Elect Engn Xian Shaanxi Peoples R China|Incheon Natl Univ Dept Embedded Syst Engn Incheon South Korea;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610064 Sichuan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    convolutional sparse representation; Laplacian pyramid; medical image fusion;

    机译:卷积稀疏表示;拉普拉斯金字塔;医学图像融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号