首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Clustering-Based Transductive Semi-Supervised Learning for Learning-to-Rank
【24h】

Clustering-Based Transductive Semi-Supervised Learning for Learning-to-Rank

机译:基于聚类的过渡性半监督学习,用于等级学习

获取原文
获取原文并翻译 | 示例

摘要

Learning-to-rank (LTR) is a very hot topic of research for information retrieval (IR). LTR framework usually learns the ranking function using available training data that are very cost-effective, time-consuming and biased. When sufficient amount of training data is not available, semi-supervised learning is one of the machine learning paradigms that can be applied to get pseudo label from unlabeled data. Cluster and label is a basic approach for semi-supervised learning to identify the high-density region in data space which is mainly used to support the supervised learning. However, clustering with conventional method may lead to prediction performance which is worse than supervised learning algorithms for application of LTR. Thus, we propose rank preserving clustering (RPC) with PLocalSearch and get pseudo label for unlabeled data. We present semi-supervised learning that adopts clustering-based transductive method and combine it with nonmeasure specific listwise approach to learn the LTR model. Moreover, each cluster follows the multi-task learning to avoid optimization of multiple loss functions. It reduces the training complexity of adopted listwise approach from an exponential order to a polynomial order. Empirical analysis on the standard datasets (LETOR) shows that the proposed model gives better results as compared to other state-of-the-arts.
机译:等级学习(LTR)是信息检索(IR)研究的一个非常热门的话题。 LTR框架通常使用成本效益高,耗时且有偏见的可用训练数据来学习排名功能。当没有足够数量的训练数据时,半监督学习是可以应用于从未标记数据中获取伪标记的机器学习范例之一。聚类和标签是半监督学习识别数据空间中高密度区域的基本方法,主要用于支持监督学习。然而,用常规方法进行聚类可能会导致预测性能,这要比应用LTR的监督学习算法差。因此,我们提出了使用PLocalSearch的秩保留聚类(RPC)并为未标记的数据获取伪标记。我们提出了采用基于聚类的转导方法的半监督学习,并将其与非度量特定的列表方法相结合来学习LTR模型。此外,每个集群都遵循多任务学习,以避免多个损失函数的优化。它将采用的列表方式的训练复杂度从指数级降低到多项式级。对标准数据集(LETOR)的经验分析表明,与其他最新技术相比,该模型提供了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号