首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >AN EFFICIENT HUMAN FACE RECOGNITION SYSTEM USING PSEUDO ZERNIKE MOMENT INVARIANT AND RADIAL BASIS FUNCTION NEURAL NETWORK
【24h】

AN EFFICIENT HUMAN FACE RECOGNITION SYSTEM USING PSEUDO ZERNIKE MOMENT INVARIANT AND RADIAL BASIS FUNCTION NEURAL NETWORK

机译:基于伪Zernike矩不变和径向基函数神经网络的高效人脸识别系统

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel method for the recognition of human faces in two-dimensional digital images using a new feature extraction method and Radial Basis Function (RBF) neural network with a Hybrid Learning Algorithm (HLA) as classifier. The proposed feature extraction method includes human face localization derived from the shape information using a proposed distance measure as Facial Candidate Threshold (FCT) as well as Pseudo Zernike Moment Invariant (PZMI) with a. newly defined parameter named Correct Information Ratio (CIR) of images for disregarding irrelevant information of face images. In this paper, the effect of these parameters in disregarding irrelevant information in recognition rate improvement is studied. Also we evaluate the effect of orders of PZMI in recognition rate of the proposed technique as well as learning speed. Simulation results on the face database of Olivetti Research Laboratory (ORL) indicate that high order PZMI together with the derived face localization technique for extraction of feature data yielded a recognition rate of 99 3%.
机译:本文介绍了一种新的二维数字图像中人脸识别的方法,该方法采用了一种新的特征提取方法,并以混合学习算法(HLA)为分类器的径向基函数(RBF)神经网络。拟议的特征提取方法包括使用拟议的距离度量(人脸候选阈值(FCT)和伪Zernike矩不变量(PZMI))从人的形状信息中提取人脸。新定义的参数,称为图像的正确信息比率(CIR),用于忽略人脸图像的无关信息。本文研究了这些参数在忽略识别率提高中无关信息的影响。我们还评估了PZMI的顺序对所提出的技术的识别率以及学习速度的影响。在Olivetti研究实验室(ORL)的人脸数据库上的仿真结果表明,高阶PZMI与导出的人脸定位技术一起提取特征数据可产生99 3%的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号