首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A New Method For Facial Featuresquantification Of Caricature based On Self-reference Model
【24h】

A New Method For Facial Featuresquantification Of Caricature based On Self-reference Model

机译:基于自参考模型的漫画面部特征量化新方法

获取原文
获取原文并翻译 | 示例

摘要

Some facial features that differ from an ordinary face should be identified by a computer when generating a facial caricature. These distinctive facial features are called self-features. Compared with traditional Mean Face Model (MFM) that is unable to quantify these self-features well, a Self-Reference Model (SRM) is presented in this paper. Firstly, based on the physiology structure of a front face, a self-reference is found, and this reference is used to measure the self-features. According to the self-reference, some standard facial parameters are worked out by collecting statistic data of many facial images. Then, in an input face image, by evaluating some differences between the input face and the standard facial parameters, the self-features are properly estimated and quantified. Finally, by analyzing some caricatures produced by caricaturists, the SRM can prove the validity of the proposed Algorithm.
机译:生成面部漫画时,计算机应识别出一些与普通面孔不同的面部特征。这些独特的面部特征称为自我特征。与无法很好地量化这些自我特征的传统均值面孔模型(MFM)相比,本文提出了一种自我参考模型(SRM)。首先,基于正面的生理结构,找到一个自我参照,并以此参照来衡量自我特征。根据自参考,通过收集许多人脸图像的统计数据,制定出一些标准的人脸参数。然后,在输入面部图像中,通过评估输入面部与标准面部参数之间的一些差异,可以正确地估计和量化自特征。最后,通过分析漫画家产生的一些漫画,SRM可以证明所提算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号