首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A REGION DECOMPOSITION-BASED MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM
【24h】

A REGION DECOMPOSITION-BASED MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM

机译:基于区域分解的多目标粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel multi-objective particle swarm optimization algorithm based on MOEA/ D-M2M decomposition strategy (MOPSO-M2M) is proposed. MOPSO-M2M can decompose the objective space into a number of subregions and then search all the subregions using respective sub-swarms simultaneously. The M2M decomposition strategy has two very desirable properties with regard to MOPSO. First, it facilitates the determination of the global best (gbest) for each sub-swarm. A new global attraction strategy based on M2M decomposition framework is proposed to guide the flight of particles by setting an archive set which is used to store the historical best solutions found by the swarm. When we determine the gbest for each particle, the archive set is decomposed and associated with each sub-swarm. Therefore, every sub-swarm has its own archive subset and the gbest of the particle in a sub-swarm is selected randomly in its archive subset. The new global attraction strategy yields a more reasonable gbest selection mechanism, which can be more effective to guide the particles to the Pareto Front (PF). This strategy can ensure that each sub-swarm searches its own subregion so as to improve the search efficiency. Second, it has a good ability to maintain the diversity of the population which is desirable in multi-objective optimization. Additionally, M0PS0-M2M applies the Tchebycheff approach to determine the personal best position (pbest) and no additional clustering or niching technique is needed in this algorithm. In order to demonstrate the performance of the proposed algorithm, we compare it with two other algorithms: MOPSO and DMS-MO-PSO. The experimental results indicate the validity of this method.
机译:提出了一种基于MOEA / D-M2M分解策略(MOPSO-M2M)的多目标粒子群优化算法。 MOPSO-M2M可以将目标空间分解为多个子区域,然后使用各自的子群同时搜索所有子区域。关于MOPSO,M2M分解策略具有两个非常理想的属性。首先,它有助于确定每个子群的全局最佳(最佳)。提出了一种基于M2M分解框架的新的全球吸引力策略,通过设置一个档案集来指导粒子的飞行,该档案集用于存储群发现的历史最佳解。当我们确定每个粒子的最大组时,存档集将分解并与每个子群相关联。因此,每个子群都具有其自己的存档子集,并且在其子集中随机选择子群中粒子的gbest。新的全球吸引策略产生了更合理的最佳选择机制,可以更有效地将粒子引导到帕累托阵线(PF)。该策略可以确保每个子群搜索其自己的子区域,从而提高搜索效率。第二,它具有良好的维持种群多样性的能力,这是多目标优化所需要的。此外,M0PS0-M2M应用Tchebycheff方法来确定个人最佳位置(最佳),并且此算法不需要其他聚类或小生境技术。为了演示该算法的性能,我们将其与其他两种算法进行了比较:MOPSO和DMS-MO-PSO。实验结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号