首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A Novel Cardiac Arrhythmias Detection Approach for Real-Time Ambulatory ECG Diagnosis
【24h】

A Novel Cardiac Arrhythmias Detection Approach for Real-Time Ambulatory ECG Diagnosis

机译:一种实时动态心电图诊断的新型心律失常检测方法

获取原文
获取原文并翻译 | 示例

摘要

In view of requirements of low-resource consumption and high-efficiency in real-time Ambulatory Electrocardiograph Diagnosis (AED) applications, a novel Cardiac Arrhythmias Detection (CAD) algorithm is proposed. This algorithm consists of three core modules: an automatic-learning machine that models diagnostic criteria and grades the emergency events of cardiac arrhythmias by studying morphological characteristics of ECG signals and experiential knowledge of cardiologists; a rhythm classifier that recognizes and classifies heart rhythms basing on statistical features comparison and linear discriminant with confidence interval estimation; and an arrhythmias interpreter that assesses emergency events of cardia arrhythmias basing on a two rule-relative interpretation mechanisms. The experiential results on off-line MIT-BIH cardiac arrhythmia database as well as online clinical testing explore that this algorithm has 92.8% sensitivity and 97.5% specificity in average, so that it is suitable for real-time cardiac arrhythmias monitoring.
机译:鉴于实时动态心电图诊断(AED)应用中对资源消耗低和效率高的要求,提出了一种新颖的心律失常检测(CAD)算法。该算法包括三个核心模块:一台自动学习机,通过研究ECG信号的形态特征和心脏病专家的经验知识,对诊断标准进行建模并为心律不齐的紧急事件分级。节律分类器,根据统计特征比较和带有置信区间估计值的线性判别,对心律进行识别和分类;心律失常解释器基于两种相对规则的解释机制评估of门心律失常的紧急事件。离线MIT-BIH心律失常数据库以及在线临床测试的实验结果表明,该算法平均灵敏度为92.8%,特异性为97.5%,适合实时监测心律失常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号