首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Detection of Lane-Change Events in Naturalistic Driving Videos
【24h】

Detection of Lane-Change Events in Naturalistic Driving Videos

机译:自然驾驶视频中变道事件的检测

获取原文
获取原文并翻译 | 示例

摘要

Lane changes are important behaviors to study in driving research. Automated detection of lane-change events is required to address the need for data reduction of a vast amount of naturalistic driving videos. This paper presents a method to deal with weak lane-marker patterns as small as a couple of pixels wide. The proposed method is novel in its approach to detecting lane-change events by accumulating lane-marker candidates over time. Since the proposed method tracks lane markers in temporal domain, it is robust to low resolution and many different kinds of interferences. The proposed technique was tested using 490 h of naturalistic driving videos collected from 63 drivers. The lane-change events in a 10-h video set were first manually coded and compared with the outcome of the automated method. The method's sensitivity was 94.8% and the data reduction rate was 93.6%. The automated procedure was further evaluated using the remaining 480-h driving videos. The data reduction rate was 97.4%. All 4971 detected events were manually reviewed and classified as either true or false lane-change events. Bootstrapping showed that the false discovery rate from the larger data set was not significantly different from that of the 10-h manually coded data set. This study demonstrated that the temporal processing of lane markers is an efficient strategy for detecting lane-change events involving weak lane-marker patterns in naturalistic driving.
机译:车道变化是驾驶研究中重要的行为。需要自动检测车道变更事件,以解决减少大量自然驾驶视频数据的需求。本文提出了一种处理小至几个像素宽的弱车道标志图案的方法。所提出的方法在其方法上是新颖的,其通过随着时间的推移累积车道标记候选来检测车道改变事件。由于所提出的方法在时域中跟踪车道标记,因此对于低分辨率和多种不同类型的干扰具有鲁棒性。使用从63位驾驶员那里收集的490小时自然驾驶视频,对提出的技术进行了测试。首先手动编码10小时视频集中的车道变更事件,并将其与自动化方法的结果进行比较。该方法的灵敏度为94.8%,数据减少率为93.6%。使用剩余的480小时驾驶视频进一步评估了自动化程序。数据减少率为97.4%。手动检查了所有4971个事件,并将其分类为真或假车道变更事件。引导显示,来自较大数据集的错误发现率与10小时手动编码数据集的错误发现率没有显着差异。这项研究表明,车道标志的时间处理是检测自然驾驶中涉及弱车道标志模式的车道变化事件的有效策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号