首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Vehicle Driving Direction Control Based on Compressed Network
【24h】

Vehicle Driving Direction Control Based on Compressed Network

机译:基于压缩网络的车辆行驶方向控制

获取原文
获取原文并翻译 | 示例

摘要

Today, in the construction of smart city, the development of self-driving technology plays the key role. The explosion of convolutional neural network (CNN) technology has made it possible to utilize end-to-end tasks with images. However, today's CNN has deeper, more accurate characteristics. If we do not improve the calculation method to reduce the number of network parameters, this feature makes it very difficult for us to run neural network computing in small devices. In this paper, we further optimize the network computing methods based on Mobile-Nets to reduce number of network parameters. At the same time, in the network structure, we add BatchNormalization and Swish activation function. We designed our own network in the end-to-end prediction for steering angle in the self-driving car task. From the final simulation results, our neural network's storage space can be reduced and the execution speed of neural network can be improved while maintaining the accuracy of the neural network.
机译:如今,在智慧城市的建设中,自动驾驶技术的发展起着关键作用。卷积神经网络(CNN)技术的爆炸式增长使利用端到端任务处理图像成为可能。但是,当今的CNN具有更深入,更准确的特征。如果我们不改进计算方法以减少网络参数的数量,则此功能使我们很难在小型设备中运行神经网络计算。在本文中,我们进一步优化了基于Mobile-Nets的网络计算方法,以减少网络参数的数量。同时,在网络结构中,我们添加了BatchNormalization和Swish激活功能。我们在自动驾驶汽车任务的转向角的端到端预测中设计了自己的网络。从最终的仿真结果来看,在保持神经网络精度的同时,可以减少神经网络的存储空间,提高神经网络的执行速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号