首页> 外文期刊>International journal of parallel programming >SWIMM 2.0: Enhanced Smith-Waterman on Intel's Multicore and Manycore Architectures Based on AVX-512 Vector Extensions
【24h】

SWIMM 2.0: Enhanced Smith-Waterman on Intel's Multicore and Manycore Architectures Based on AVX-512 Vector Extensions

机译:SWIMM 2.0:基于AVX-512矢量扩展的英特尔多核和Manycore架构上的增强型Smith-Waterman

获取原文
获取原文并翻译 | 示例

摘要

The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments, but its acceptance is limited by the computational requirements for large protein databases. Although the acceleration of SW has already been studied on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 vector extensions. This SIMD set is currently supported by Intel's Knights Landing (KNL) accelerator and Intel's Skylake (SKL) general purpose processors. In this paper, we present an SW version that is optimized for both architectures: the renowned SWIMM 2.0. The novelty of this vector instruction set requires the revision of previous programming and optimization techniques. SWIMM 2.0 is based on a massive multi-threading and SIMD exploitation. It is competitive in terms of performance compared with other state-of-the-art implementations, reaching 511 GCUPS on a single KNL node and 734 GCUPS on a server equipped with a dual SKL processor. Moreover, these successful performance rates make SWIMM 2.0 the most efficient energy footprint implementation in this study achieving 2.94 GCUPS/Watts on the SKL processor.
机译:众所周知的Smith-Waterman(SW)算法是最常用的局部序列比对方法,但其接受度受到大型蛋白质数据库计算要求的限制。尽管已经在许多并行平台上研究了SW的加速,但是几乎没有任何研究可以利用基于AVX-512矢量扩展的最新Intel架构。英特尔的Knights Landing(KNL)加速器和英特尔的Skylake(SKL)通用处理器目前支持此SIMD集。在本文中,我们介绍了针对两种架构进行了优化的SW版本:著名的SWIMM 2.0。此向量指令集的新颖性要求修订先前的编程和优化技术。 SWIMM 2.0基于大量的多线程和SIMD开发。与其他最先进的实现方式相比,它在性能方面具有竞争力,在单个KNL节点上达到511 GCUPS,在配备双SKL处理器的服务器上达到734 GCUPS。此外,这些成功的性能使SWIMM 2.0成为本研究中最有效的能源足迹实现方案,在SKL处理器上达到2.94 GCUPS / Watts。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号