首页> 外文期刊>International journal of parallel programming >SWIMM 2.0: Enhanced Smith-Waterman on Intel's Multicore and Manycore Architectures Based on AVX-512 Vector Extensions
【24h】

SWIMM 2.0: Enhanced Smith-Waterman on Intel's Multicore and Manycore Architectures Based on AVX-512 Vector Extensions

机译:Swimm 2.0:基于AVX-512矢量扩展的Intel的Multicore和Manycore架构增强了史密斯 - Waterman

获取原文
获取原文并翻译 | 示例

摘要

The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments, but its acceptance is limited by the computational requirements for large protein databases. Although the acceleration of SW has already been studied on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 vector extensions. This SIMD set is currently supported by Intel's Knights Landing (KNL) accelerator and Intel's Skylake (SKL) general purpose processors. In this paper, we present an SW version that is optimized for both architectures: the renowned SWIMM 2.0. The novelty of this vector instruction set requires the revision of previous programming and optimization techniques. SWIMM 2.0 is based on a massive multi-threading and SIMD exploitation. It is competitive in terms of performance compared with other state-of-the-art implementations, reaching 511 GCUPS on a single KNL node and 734 GCUPS on a server equipped with a dual SKL processor. Moreover, these successful performance rates make SWIMM 2.0 the most efficient energy footprint implementation in this study achieving 2.94 GCUPS/Watts on the SKL processor.
机译:众所周知的史密斯 - 水工(SW)算法是最常用的本地序列比对方法,但其接受受大蛋白质数据库的计算要求受限。虽然SW的加速已经在许多并行平台上进行了研究,但几乎没有任何研究,这些研究利用了基于AVX-512矢量扩展的最新英特尔架构。此SIMD集目前由英特尔的骑士登陆(KNL)加速器和英特尔的Skylake(SKL)通用处理器提供支持。在本文中,我们介绍了一个针对架构优化的SW版本:着名的Swimm 2.0。该矢量指令集的新颖性需要修改以前的编程和优化技术。 Swimm 2.0基于大量的多线程和SIMD开发。与其他最先进的实施方式相比,它在性能方面具有竞争力,在单个KNL节点上达到511个GCUP,在配备双SKL处理器的服务器上达到了734个GCUP。此外,这些成功的绩效率使SWIMM 2.0在这项研究中最有效的能量足迹实现,在SKL处理器上实现了2.94个GCUPS / WATT。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号