首页> 外文期刊>International Journal of Parallel Programming >Regular Lattice and Small-World Spin Model Simulations Using CUDA and GPUs
【24h】

Regular Lattice and Small-World Spin Model Simulations Using CUDA and GPUs

机译:使用CUDA和GPU的常规晶格和小世界自旋模型仿真

获取原文
获取原文并翻译 | 示例

摘要

Data-parallel accelerator devices such as Graphical Processing Units (GPUs) are providing dramatic performance improvements over even multi-core CPUs for lattice-oriented applications in computational physics. Models such as the Ising and Potts models continue to play a role in investigating phase transitions on small-world and scale-free graph structures. These models are particularly well-suited to the performance gains possible using GPUs and relatively high-level device programming languages such as NVIDIA’s Compute Unified Device Architecture (CUDA). We report on algorithms and CUDA data-parallel programming techniques for implementing Metropolis Monte Carlo updates for the Ising model using bit-packing storage, and adjacency neighbour lists for various graph structures in addition to regular hypercubic lattices. We report on parallel performance gains and also memory and performance tradeoffs using GPU/CPU and algorithmic combinations.
机译:诸如图形处理单元(GPU)之类的数据并行加速器设备甚至在用于计算物理学中面向格点应用的多核CPU上也提供了显着的性能提升。 Ising和Potts模型之类的模型在调查小世界和无标度图结构的相变中继续发挥作用。这些模型特别适合使用GPU和相对高级的设备编程语言(例如NVIDIA计算统一设备架构(CUDA))获得的性能提升。我们报告了有关算法和CUDA数据并行编程技术,用于使用位打包存储为Ising模型实施Metropolis Monte Carlo更新,以及除常规超三次晶格以外的各种图形结构的相邻邻居列表。我们报告了使用GPU / CPU和算法组合的并行性能提升以及内存和性能的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号