首页> 外文期刊>International journal of open source software & processes >Software Defect Prediction Using Genetic Programming and Neural Networks
【24h】

Software Defect Prediction Using Genetic Programming and Neural Networks

机译:使用遗传编程和神经网络的软件缺陷预测

获取原文
获取原文并翻译 | 示例

摘要

This article describes how classification methods on software defect prediction is widely researched due to the need to increase the software quality and decrease testing efforts. However, findings of past researches done on this issue has not shown any classifier which proves to be superior to the other. Additionally, there is a lack of research that studies the effects and accuracy of genetic programming on software defect prediction. To find solutions for this problem, a comparative software defect prediction experiment between genetic programming and neural networks are performed on four datasets from the NASA Metrics Data repository. Generally, an interesting degree of accuracy is detected, which shows how the metric-based classification is useful. Nevertheless, this article specifies that the application and usage of genetic programming is highly recommended due to the detailed analysis it provides, as well as an important feature in this classification method which allows the viewing of each attributes impact in the dataset.
机译:本文描述了由于需要提高软件质量和减少测试工作而如何广泛研究软件缺陷预测的分类方法。但是,过去在该问题上进行的研究结果并未显示任何分类器被证明优于其他分类器。此外,缺乏研究来研究基因编程对软件缺陷预测的影响和准确性。为了找到解决该问题的方法,对来自NASA Metrics Data存储库的四个数据集进行了遗传编程和神经网络之间的比较软件缺陷预测实验。通常,会检测到有趣的准确度,这表明基于度量的分类如何有用。尽管如此,本文还是指定了遗传编程的应用和使用,因为它提供了详细的分析,并且强烈建议使用遗传编程,并且该分类方法具有重要功能,可以查看数据集中的每个属性影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号